DIGITAL INDICATOR JIR-301-M

Instruction Manual

Preface

Thank you for purchasing our Digital Indicator JIR-301-M. This manual contains instructions for the mounting, functions, operations and notes when operating the JIR-301-M. To prevent accidents arising from the misuse of this instrument, please ensure the operator receives this manual.

Notes

- This instrument should be used in accordance with the specifications described in the manual. If it is not used according to the specifications, it may malfunction or cause a fire.
- Be sure to follow the warnings, cautions and notices. If they are not observed, serious injury or malfunction may occur.
- The contents of this instruction manual are subject to change without notice.
- Care has been taken to ensure that the contents of this instruction manual are correct, but if there are any doubts, mistakes or questions, please inform our sales department.
- This instrument is designed to be installed through a control panel indoors. If it is not, measures must be taken to ensure that the operator cannot touch power terminals or other high voltage sections.
- Any unauthorized transfer or copying of this document, in part or in whole, is prohibited.
- Shinko Technos Co., Ltd. is not liable for any damage or secondary damage(s) incurred as a result of using this product, including any indirect damage.

Safety Precautions (Be sure to read these precautions before using our products.)

The safety precautions are classified into categories: "Warning" and "Caution". Depending on circumstances, procedures indicated by $\widehat{\downarrow}$ Caution may result in serious consequences, so be sure to follow the directions for usage.
\triangle Warning
Procedures which may lead to dangerous conditions and cause death or serious injury, if not carried out properly.

Procedures which may lead to dangerous conditions and cause superficial to medium injury or physical damage or may degrade or damage the product, if not carried out properly.

\triangle Warning

- To prevent an electrical shock or fire, only Shinko or other qualified service personnel may handle the inner assembly.
- To prevent an electrical shock, fire or damage to the instrument, parts replacement may only be undertaken by Shinko or other qualified service personnel.

\triangle Safety Precautions

- To ensure safe and correct use, thoroughly read and understand this manual before using this instrument.
- This instrument is intended to be used for industrial machinery, machine tools and measuring equipment. Verify correct usage after purpose-of-use consultation with our agency or main office. (Never use this instrument for medical purposes with which human lives are involved.)
- External protection devices such as protective equipment against excessive temperature rise, etc. must be installed, as malfunction of this product could result in serious damage to the system or injury to personnel. Proper periodic maintenance is also required.
- This instrument must be used under the conditions and environment described in this manual. Shinko Technos Co., Ltd. does not accept liability for any injury, loss of life or damage occurring due to the instrument being used under conditions not otherwise stated in this manual.

Warning on Model Label

Caution
 Failure to handle this instrument properly may result in minor or moderate injury or property damage due to fire, malfunction, malfunction, or electric shock. Please read this manual before using the product to ensure that you fully understand the product.

. Caution with Respect to Export Trade Control Ordinance

To avoid this instrument from being used as a component in, or as being utilized in the manufacture of weapons of mass destruction (i.e. military applications, military equipment, etc.), please investigate the end users and the final use of this instrument.
In the case of resale, ensure that this instrument is not illegally exported.

Precautions for Use

1. Installation Precautions

Caution

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2
Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to $50^{\circ} \mathrm{C}$ (32 to $122^{\circ} \mathrm{F}$) that does not change rapidly, and no icing
- An ambient non-condensing humidity of 35 to 85% RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil or chemicals or where the vapors of these substances can come into direct contact with the unit
- Please note that the ambient temperature of this unit - not the ambient temperature of the control panel - must not exceed $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ if mounted through the face of a control panel, otherwise the life of electronic components (especially electrolytic capacitors) may be shortened.
Note•Avoid setting this instrument directly on or near flammable material even though the case of this instrument is made of flame-resistant resin.

2. Wiring Precautions

Caution

- Do not leave wire remnants in the instrument, as they could cause a fire or malfunction.
- The terminal block of this instrument is designed to be wired from the upper side. The lead wire must be inserted from the upper side of the terminal, and fastened with the terminal screw.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw or case may be damaged.
- Do not pull or bend the lead wire on the terminal side when wiring or after wiring, as it could cause malfunction.
- Use a thermocouple and compensating lead wire according to the sensor input specifications of this instrument.
- Use the 3-wire RTD according to the sensor input specifications of this instrument.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a-power switch, circuit breaker and fuse near the instrument.
(Recommended fuse: Time-lag fuse, rated voltage 250 VAC , rated current 2 A)
- For a 24 V AC/DC power source, do not confuse polarity when using direct current (DC).
- When using a relay contact output type, externally use a relay according to the capacity of the load to protect the built-in relay contact.
- When wiring, keep input wires (thermocouple, RTD, etc.) away from AC power sources or load wires.
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.

3. Operation and Maintenance Precautions

! 1 Caution

- Do not touch live terminals. This may cause electrical shock or problems in operation.
- Turn the power supply to the instrument OFF before retightening the terminal or cleaning, Working on or touching the terminal with the power switched ON may result in severe injury or death due to electrical shock.
- Use a soft, dry cloth when cleaning the instrument.
(Alcohol based substances may tarnish or deface the unit.)
- As the display section is vulnerable, be careful not to put pressure on, scratch or strike it with a hard object.

4. Compliance with Safety Standards

Caution

- Always install the recommended fuse described in this manual externally.
- If the instrument is used in a manner not specified by the manufacturer, the protection provided by the instrument may be impaired.
- Use a device with reinforced insulation or double insulation for the external circuit connected to this product.
- When using this product as a UL certified product, use a power supply conforming to Class 2 or LIM for the external circuit connected to the product.

Characters used in this manual (A : No character is indicated.)

Indication	-1	\square	'	こ	\exists	4	5	E	7	B	9	I	F	
Number, ${ }^{\circ} \mathrm{C} / \mathrm{F}$	-1	0	1	2	3	4	5	6	7	8	9	${ }^{\circ} \mathrm{C}$	${ }^{\text {F }}$	
Indication	A	7	b	-	\square	E	F	F	H	'	-	t	L	$\overline{7}$
Alphabet	A		B	C	D	E	F	G	H	1	J	K	L	M
Indication	\square	\square	F	9	r-	4	'	H'	B	\rightarrow	\because	\because	三	
Alphabet	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	

Contents

1. Model 6
1.1 Model 6
1.2 How to Read the Model Label 7
2. Name and Functions 8
3. Mounting to the Control Panel 9
3.1 Site Selection 9
3.2 External Dimensions (Scale: mm) 9
3.3 Panel Cutout (Scale: mm) 9
3.4 Mounting the Unit 10
4. Wiring 11
4.1 Terminal Arrangement 11
4.2 Lead Wire Solderless Terminal 12
4.3 When Using as a Current Loop Supply 12
5. Setup 13
5.1 Registering the Selected Item or Value 13
5.2 Alarm Setting Mode 14
5.3 Auxiliary Function Setting Mode 1 15
5.4 Auxiliary Function Setting Mode 2 18
5.5 Maintenance Mode 25
6. Operation 26
6.1 Operation 26
6.2 Switching SV Display Indication 26
6.3 How to Use the Alarm Output 26
6.4 How to Use the Event Input Function 26
7. Alarm Action 27
7.1 High Limit Alarm, Low Limit Alarm 27
7.2 A3 High/Low Limit Range Alarm Action 28
7.3 A4 High/Low Limit Range Alarm Action 28
8. Specifications 29
8.1 Standard Specifications 29
8.2 Optional Specifications 33
9. Troubleshooting 35
10. Character Table 37
10.1 Alarm Setting Mode 37
10.2 Auxiliary Function Setting Mode 1 38
10.3 Auxiliary Function Setting Mode 2 39
10.4 Maintenance Mode 42
11. Key Operation Flowchart 43

1. Model

1.1 Model

JIR-301-M		ㅁ, ㅁ口ロ		Series name: JIR-301-M (W96 x H48 x D110 mm)		
Input	M			Multi-range (*1)		
Power supply				100 to 240 V AC		
		1		$24 \mathrm{~V} \mathrm{AC/DC} \mathrm{(*2)}$		
Option			A4	Alarm 4 output (*3)		
			C5	Serial communication (RS-485)(*4)		
			P24	Insulated power output 24 ± 3 V DC (*5), (*6)		
			P5	Insulated power output $5 \pm 0.5 \mathrm{~V}$ DC (*5), (*6)		
			DSB	Power for 2-wire transmitter (Current loop supply)(*6), (*7)		
			TA2 (4-20)	Transmission output 2 (*3)	Direct current	4 to 20 mADC
			TA2 (0-20)		output	0 to 20 mADC
			TV2 (0-1)		DC voltage output	0 to 1 V DC
			TV2 (0-5)			0 to 5 V DC
			TV2 (1-5)			1 to 5 V DC
			TV2 (0-10)			0 to 10 V DC
			TA (0-20)	User specified Transmission output (*8)	Direct current output	0 to 20 mADC
			TV (0-1)		DC voltage output	0 to 1 V DC
			TV (0-5)			0 to 5 V DC
			TV (1-5)			1 to 5 V DC
			TV (0-10)			0 to 10 V DC
			BK	Color: Black		
			TC	Terminal cover		

Alarms A1, A2 and A3 outputs are standard features. Alarm types (4 types for A1, A2, and 5 types for A3 as well as No alarm action) and Energized/De-energized can be selected.
(*1) Thermocouple (10 types), RTD (2 types), Direct current (2 types) and DC voltage (4 types) can be selected by keypad.
(*2) Power supply voltage 100 to 240 VAC is standard. When ordering $24 \mathrm{~V} \mathrm{AC/DC}$, enter ' 1 ' after the input code.
(*3) Alarm 4 output (A4 option) and Transmission output 2 ($T \square 2$ option) cannot be used together.
(*4) If Serial communication (RS-485)[C5 option] is ordered, the Event input function will not be available.
(*5) Insulated power output (P24 option) and Insulated power output (P5 option) cannot be used together. If Insulated power output (P24 option) or Insulated power output (P5 option) is ordered, A2 output cannot be used.
(*6) Insulated power output (P24 or P5 option) cannot be used with the Power for 2-wire transmitter (DSB option).
(*7) If Power for 2-wire transmitter (DSB option) is ordered, only 4 to 20 mADC input (Built-in 50Ω shunt resistor) can be used.
(*8) TA (4-20 mA DC) is a standard feature.

1.2 How to Read the Model Label

Model labels are attached to the case and the inner assembly.

Top of the case

(Fig. 1.2-1)

No.	Description	Example
(1)	Terminal arrangement	Terminal arrangement of JIR-301-M C5, TA(0 to 20), TA2(0 to 20)
(2)	Model	JIR-301-M C5, TA(0 to 20), TA2(0 to 20)
(3)	Input	MULTI-RANGE (Multi-range input)
(4)	A1, A2, A3, A4, P24, P5 outputs	A1, A3: 3 A 250 V AC A2: 3 A 250 V AC
(5)	Power supply voltage Power consumption	100 to 240 V AC 50/60 Hz, 10 VA
(6)	Serial number	No.165F05000
(7)	Manufacturing factory ID	SF (Fukuoka factory)
(8)	Compliant standards	CE, UL
(9)	RoHS	RoHS directive compliant
(10)	Ambient temperature	0 to 50C
(11)	Manufacturer	SHINKO TECHNOS CO., LTD.

Inner assembly

(Fig. 1.2-2)

No.	Description	Example
(1)	Model	JIR-301-M
(2)	Serial number	No. 165F05000

2. Name and Functions

(Fig. 2-1)
Display, Indicator

Name	Description
PV Display	Indicates PV (process variable) or characters in the setting mode with the red LED.
SV Display	Indicates A1/A2/A3/A4 value or the set value in the setting mode with the green LED.
HOLD indicator	When PV is held (HOLD, Peak HOLD, Bottom HOLD), the yellow LED is lit.
TX/RX indicator	The yellow LED is lit during Serial communication (C5 option) TX (transmitting) output.
A1 value indicator	When A1 value is indicated on the SV Display, the green LED is lit.
A2 value indicator	When A2 value is indicated on the SV Display, the green LED is lit.
A3 value indicator	When A3 value is indicated on the SV Display, the green LED is lit.
A4 value indicator	When A4 value is indicated on the SV Display, the green LED is lit. (A4 option)
A1 action indicator	When A1 output is ON, the red LED is lit. While A1 output is held (maintained), the red LED flashes.
A2 action indicator	When A2 output is ON, the red LED is lit. While A2 output is held (maintained), the red LED flashes.
A3 action indicator	When A3 output is ON, the red LED is lit. While A3 output is held (maintained), the red LED flashes.
A4 action indicator	When A4 output is ON, the red LED is lit. While A4 output is held (maintained), the red LED flashes. (A4 option)

Key

Name	Description
UP key	Increases the numeric value. If High/Low limit range alarm is selected in [A4 type], and if the SV Display indicates A4 value, the SV Display indicates A4 high limit value while the UP key is pressed.
FAST key	Makes the set value change faster while pressing the UP/DOWN key and FAST key together.
DOWN key	Decreases the numeric value.
MODE key	Selects the setting mode, and registers the set value.

4. Notice

When setting the specifications and functions of this instrument, connect mains power cable to terminals 2 and 3 first, then set them referring to " 5 . Setup" before performing " 3 . Mounting to the Control Panel" and "4. Wiring".

3. Mounting to the Control Panel

3.1 Site Selection

This instrument is intended to be used under the following environmental conditions (IEC61010-1): Overvoltage category II, Pollution degree 2
Ensure the mounting location corresponds to the following conditions:

- A minimum of dust, and an absence of corrosive gases
- No flammable, explosive gases
- No mechanical vibrations or shocks
- No exposure to direct sunlight, an ambient temperature of 0 to $50^{\circ} \mathrm{C}\left(32\right.$ to $122^{\circ} \mathrm{F}$) that does not change rapidly
- An ambient non-condensing humidity of 35 to 85% RH
- No large capacity electromagnetic switches or cables through which large current is flowing
- No water, oil or chemicals or where the vapors of these substances can come into direct contact with the unit
- Please note that the ambient temperature of this unit - not the ambient temperature of the control panel - must not exceed $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ if mounted through the face of a control panel, otherwise the life of electronic components (especially electrolytic capacitors) may be shortened.

3.2 External Dimensions (Scale: mm)

(*) When terminal cover is used
(Fig. 3.2-1)

3.3 Panel Cutout (Scale: mm)

Vertical close mounting
n : Number of mounted units

【. Caution: If vertical close mounting is used for the instrument, IP66 (Drip-proof/ Dust-proof) may be compromised, and all warranties will be invalidated.
(Fig. 3.3-1)

3.4 Mounting the Unit

Mount the instrument vertically to the flat, rigid panel to ensure it adheres to the Drip-proof/Dust-proof specification (IP66).
Mountable panel thickness: 1 to 8 mm
(1) Insert the instrument from the front side of the control panel.
(2) Attach the mounting brackets by the slots on the right and left sides of the case, and secure the instrument in place with the screws.

(Fig. 3.4-1)

Caution

As the case of the JIR-301-M is made of resin, do not use excessive force while tightening screws, or the mounting brackets or case could be damaged.
$0.12 \mathrm{~N} \cdot \mathrm{~m}$ of torque is recommended.

4. Wiring

. Warning

Turn the power supply to the instrument off before wiring or checking. Working on or touching the terminal with the power switched on may result in severe injury or death due to electrical shock.

4. Caution

- Do not leave wire remnants in the instrument, as they could cause a fire or malfunction.
- The terminal block of this instrument is designed to be wired from the upper side. The lead wire must be inserted from the upper side of the terminal, and fastened with the terminal screw.
- Tighten the terminal screw using the specified torque. If excessive force is applied to the screw when tightening, the terminal screw or case may be damaged.
- Do not pull or bend the lead wire on the terminal side when wiring or after wiring, as it could cause malfunction.
- Use a thermocouple and compensating lead wire according to the sensor input specifications of this instrument.
- Use the 3 -wire RTD according to the sensor input specifications of this instrument.
- This instrument does not have a built-in power switch, circuit breaker and fuse. It is necessary to install a-power switch, circuit breaker and fuse near the instrument.
(Recommended fuse: Time-lag fuse, rated voltage 250 VAC , rated current 2 A)
- For a $24 \mathrm{~V} \mathrm{AC/DC}$ power source, do not confuse polarity when using direct current (DC).
- When using a relay contact output type, externally use a relay according to the capacity of the load to protect the built-in relay contact.
- When wiring, keep input wires (thermocouple, RTD, etc.) away from AC power sources or load wires.
- Do not apply a commercial power source to the sensor which is connected to the input terminal nor allow the power source to come into contact with the sensor.

4.1 Terminal Arrangement

TRANSMIT

(Fig. 4.1-1)

Terminal Name	Description
GND	Ground terminal
PWR	Power supply
TRANSMIT OUTPUT1	Transmission output 1
A1	A1 output
A2	A2 output
A3	A3 output
EVENT INPUT	Event input
TC	Thermocouple input
RTD	RTD input
DC	Direct current input, DC voltage input For Direct current input (externally mounted 50 Ω shunt resistor), connect a 50 Ω shunt resistor (sold separately) between input terminals.
P24	Insulated power output 24 V (P24 option)
P5	Insulated power output 5 V (P5 option)
RS-485	Serial communication (RS-485) (C5 option)
TRANSMIT OUTPUT2	Transmission output 2 (Tロ2 option)
A4	A4 output (A4 option)
A	Direct current input (DSB option)
24V	Power for 2-wire transmitter (DSB option)

4.2 Lead Wire Solderless Terminal

Use a solderless terminal with an insulation sleeve in which an M3 screw fits as shown below. $0.63 \mathrm{~N} \cdot \mathrm{~m}$ of torque is recommended.

Solderless Terminal	Manufacturer	Model
	NICHIFU TERMINAL INDUSTRIES CO., LTD.	TMEX1.25Y-3
	J.S.T.MFG.CO.,LTD.	VD1.25-B3A
Ring-type	NICHIFU TERMINAL INDUSTRIES CO., LTD.	TMEX1.25-3
	J.S.T.MFG.CO.,LTD.	V1.25-3

(Fig. 4.2-1)

4.3 When Using as a Current Loop Supply

Refer to the following wiring example.

(Fig. 4.3-1)

5．Setup

After power is turned ON，the input characters and temperature unit will be indicated on the PV Display， and the input range high limit（for thermocouple，RTD input）or scaling high limit（for Direct current，DC voltage input）will be indicated on the SV Display for approx． 3 sec ．（Table 5－1）
During this time，all outputs and LED indicators are in an OFF status．Operation will then start，indicating the PV（process variable）on the PV Display，and A1，A2，A3 or A4 value on the SV Display．
（Table 5－1）

Sensor Input	PV Display（ ${ }^{\circ} \mathrm{C}$ ）	SV Display	PV Display（ $\mathrm{F}^{\text {）}}$	SV Display
K	$t \mathrm{~L}$	1776	$1 F$	こちに0
	$E \square$	400	$\Leftrightarrow \square$	750
J	ME	1000	UT	180
R	－TI	1761	－TF	三00
S	4 L	1761	$4 \square$	Э®0
B	$b \square 1$	18こG	$\square \square F$	
E	EXI	日日0	$E \square F$	1500
T	ΓE	4000	$\Gamma . F$	7508
N	त区E	108	n－F	EこG
PL－II	P12	198	PGF	2500
C（W／Re5－26）	$\square \mathrm{C}$	ここ	$\square F$	400
Pt100	FIF	ESCO	Fr	1000
JPt100	Mr：	500	Mr：F	900
Pt100	FTE	BSG	FTF	1500
JPt100	LPIE	50	HFF	90
4－20 mA DC（＊1）（＊2）	4508			
0－20 mA DC（＊1）（＊2）	ロロ\％			
0－1 V DC（＊1）	日成			
0－5 V DC（＊1）	П54	Scaling high		
1－5V DC（＊1）	－5は	limit value		
0－10 V DC（＊1）	8 O日			
4－20 mA DC（＊1）（＊3）	42%			
0－20 mA DC（＊1）（＊3）	OED			

（＊1）Input range and decimal point place can be selected．
（＊2）Connect a 50Ω shunt resistor（sold separately）between input terminals．
（＊3）Has a built－in 50Ω shunt resistor．
If Power for 2－wire transmitter（DSB option）is ordered，only 4 to 20 mA DC input（Built－in 50Ω shunt resistor）can be used．

5．1 Registering the Selected Item or Value

－To increase or decrease the numeric value，use the UP or DOWN key．
To make the set value change faster，press the UP／DOWN key and FAST key together ．
Select an setting item with the UP or DOWN key．
－Register the setting item or value using the MODE key．

5.2 Alarm Setting Mode

If the MODE key is pressed in PV/SV display mode, the unit will move to Alarm setting mode.

Character Factory Default	Setting Item, Function, Setting Range

(Table 5.2-1)

Alarm Type	Setting Range
High limit alarm	Input range low limit to input range high limit (*1)
Low limit alarm	Input range low limit to input range high limit (*1)
High limit with standby alarm	Input range low limit to input range high limit (*1)
Low limit with standby alarm	Input range low limit to input range high limit (*1)
High/Low limit range alarm (A4)	A4 low limit value: Input range low limit (*2) to A4 high limit A4 high limit value: A4 low limit to input range high limit (*3)

- The placement of the decimal point follows the selection or input range.
(*1) For direct current and DC voltage input: Setting range is [Scaling low limit to Scaling high limit].
(*2) For direct current and DC voltage input: Will be substituted by the Scaling low limit.
(*3) For direct current and DC voltage input: Will be substituted by the Scaling high limit.

5．3 Auxiliary Function Setting Mode 1

To enter Auxiliary Function Setting Mode 1，press and hold the DOWN key and MODE key（in that order） together for approx． 3 seconds in PV／SV Display Mode．

Character Factory Default	Setting Item，Function，Setting Range
Loct	Set value lock －Locks the set values to prevent setting errors． The setting item to be locked depends on the selection． －－－－（Unlock）：All set values can be changed． Lac（（Lock 1）：None of the set values can be changed． Locz（Lock 2）：Only Alarm setting mode（p．14）can be changed． Lロロ ヨ（Lock 3）：All set values－except the input type（p．18）－can be changed． However，changed values revert to their previous value after power is turned off because they are not saved in the non－volatile IC memory．Do not change any setting items in Auxiliary function setting mode 2 （pp．18－24）．If any item is changed in Auxiliary function setting mode 2，it will affect the alarm value（A1 value－A4 value）．
hat ！10	Sensor correction coefficient －Sets sensor correction coefficient． Sets slope of input value from a sensor． PV after sensor correction＝Current PV x（Sensor correction coefficient）＋ （Sensor correction value） Refer to＇Input Value Correction＇（p．17）． －Setting range：－ 10.000 to 10.000
$\begin{array}{r} 40 \square \\ 40 \end{array}$	Sensor correction －This corrects the input value from the sensor． When a sensor cannot be set at the exact location where measurement is desired，the sensor－measured temperature may deviate from the temperature in the measurement location．When using multiple indicators，sometimes the measured temperatures do not match due to differences in sensor accuracy or installation site． In such a case，the temperature in the installation site can be adjusted to the desired temperature by adjusting the sensor input value． PV after sensor correction＝Current PV x（Sensor correction coefficient）＋ （Sensor correction value） Refer to＇Input Value Correction＇（p．17）． －Setting range：－ 1000.0 to $1000.0^{\circ} \mathrm{C}$（ F ） Direct current，DC voltage input：－10000 to 10000 （The placement of the decimal point follows the selection．）
$\begin{aligned} & \text { anti } \\ & \text { noni } \end{aligned}$	Communication protocol －Selects communication protocol． Available only when Serial communication（C5 option）is ordered． －naini ：Shinko protocol ন̄ゥdif：MODBUS ASCII mode নロロir ：MODBUS RTU mode にデ』ク：MODBUS ASCII mode（Block Read／Write available） にデース：：MODBUS RTU mode（Block Read／Write available）

Character Factory Default	\quad Setting Item, Function, Setting Range
Instrument number	
•Sets the individual instrument number of this unit. (The instrument numbers	
should be set one by one when multiple instruments are connected in Serial	
communcation.)	
- Available only when the Serial communication (C5 option) is ordered	
- Setting range: 0 to 95	

Input Value Correction

Input value can be corrected in [Sensor correction coefficient] and [Sensor correction] in Auxiliary Function Setting Mode 1.
In [Sensor correction coefficient], set the slope of temperature change.
In [Sensor correction], set the difference between temperatures before correction and after correction.

PV after input correction is expressed by the following formula.
PV after input correction = Current PV x Sensor correction coefficient + (Sensor correction value)

The following shows an example of input value correction using 'Sensor correction coefficient' and 'Sensor correction value'.

(Fig. 5.3-1)
(1) Select any 2 points of PV to be corrected, and determine the PV after correction.

PV before correction: $300^{\circ} \mathrm{C} \rightarrow$ PV after correction: $340^{\circ} \mathrm{C}$
PV before correction: $750^{\circ} \mathrm{C} \rightarrow \mathrm{PV}$ after correction: $700^{\circ} \mathrm{C}$
(2) Calculate Sensor correction coefficient from Step (1).
$\left(Y^{\prime}-X^{\prime}\right) /(Y-X)=(700-340) /(750-300)=0.8$
(3) Enter a PV value of $300^{\circ} \mathrm{C}$ using an mV generator or dial resistor.
(4) Set Step (2) value as a Sensor correction coefficient.
(5) Read the PV.
$240^{\circ} \mathrm{C}$ will be indicated.
(6) Calculate the sensor correction value.

Calculate the difference between 'PV after correction' and Step (5) PV.
$340^{\circ} \mathrm{C}-240^{\circ} \mathrm{C}=100^{\circ} \mathrm{C}$
(7) Set Step (6) value as a Sensor correction value.
(8) Enter an electromotive force or resistance value equivalent to $750^{\circ} \mathrm{C}$ using an mV generator or dial resistor.
(9) Read the PV, and confirm that $700^{\circ} \mathrm{C}$ is indicated.

5．4 Auxiliary Function Setting Mode 2

To enter Auxiliary Function Setting Mode 2，press and hold the UP，DOWN and MODE keys（in that order） together for approx． 3 seconds in PV／SV Display Mode．

Character Factory Default	Setting Item，Function，Setting Range			
$\begin{aligned} & 4 E_{n} t \\ & 1 \square \square \end{aligned}$	Input type －The input type Direct current selected as w Not available －When changin connected to with the senso （Table 5．4－1）	can be selected from ther （2 types）and DC voltage ell． when Power for 2－wire tran ing the input from DC voltag this instrument first，then ch or connected，the input circ	rmocouple（10 （4 types），and ssmitter（DSB ge to other inp hange the inp uit may break	types），RTD（2 types）， the unit ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ can be option）is ordered． uts，remove the sensor ut．If the input is changed
	Character	Input Range	Character	Input Range
	$t \square$	K－200 to $1370^{\circ} \mathrm{C}$	$t \mathrm{~F}$	K－320 to $2500{ }^{\circ}$
	E	K－200．0 to $400.0^{\circ} \mathrm{C}$	$1 . F$	K－200．0 to 750．0\％
	4 L	J－200 to $1000^{\circ} \mathrm{C}$	HTF	J－320 to 1800\％
	－$\quad 1$	R 0 to $1760^{\circ} \mathrm{C}$	－－F	R 0 to $3200{ }^{\circ}$
	$4 \square$	S 0 to $1760^{\circ} \mathrm{C}$	$4 \square$	S 0 to $3200{ }^{\circ} \mathrm{F}$
	$\square \square$	B 0 to $1820^{\circ} \mathrm{C}$	$b \square F$	B 0 to $3300{ }^{\circ}$
	$E \square$	E－200 to $800{ }^{\circ} \mathrm{C}$	$E \square$	E－320 to $1500{ }^{\circ}$
	Γ IT	T－200．0 to $400.0^{\circ} \mathrm{C}$	F．F	T－200．0 to 750．0\％
	त－L	N－200 to $1300^{\circ} \mathrm{C}$	$\cdots \square$	N－320 to $2300{ }^{\circ}$
	PLET	PL－II 0 to $1390^{\circ} \mathrm{C}$	PLF	PL－II 0 to 2500\％
	$\square \square$	C （W／Re5－26） 0 to $2315^{\circ} \mathrm{C}$	$\square F$	C（W／Re5－26） 0 to $4200{ }^{\circ}$
	FI＇I	Pt100－200．0 to 850．0 ${ }^{\circ} \mathrm{C}$	FIF	Pt100－200．0 to 1000．0F
	LPTE	JPt100－200．0 to 500．0 ${ }^{\circ} \mathrm{C}$	LIFIF	JPt100－200．0 to 900．0 ${ }^{\circ}$
	FTE	Pt100－200 to 850 ${ }^{\circ} \mathrm{C}$	FrF	Pt100－300 to $1500{ }^{\circ} \mathrm{F}$
	LIFE	JPt100－200 to $500^{\circ} \mathrm{C}$	LPIF	JPt100－300 to 900 ${ }^{\circ}$
	4に日月	4 to $20 \mathrm{mADC}-2000$ to （Externally mounted 50Ω	$\begin{aligned} & 10000 \\ & 2 \text { shunt resis } \\ & \hline \end{aligned}$	
	日コロ曲	0 to $20 \mathrm{mADC}-2000$ to （Externally mounted 50Ω	$\begin{aligned} & 10000 \\ & \text { shunt resisto } \end{aligned}$	
	日治	0 to 1 V DC－2000 to 100		
	日5日	0 to 5 V DC－2000 to 100		
	，5G	1 to 5 V DC－2000 to 100		
	日保は	0 to 10 V DC－2000 to 100	0000	
	4 E	4 to $20 \mathrm{~mA} \mathrm{DC}-2000$ to	10000 （Built－i	50 Q shunt resistor）
	日ご	0 to $20 \mathrm{mADC}-2000$ to	10000 （Built－i	50 § shunt resistor）
$\begin{aligned} & 46 H \\ & \text { ano } \end{aligned}$	Scaling high I －Sets scaling hig －Available whe －Setting range：	limit high limit value． direct current or DC volta ：Scaling low limit to Input ra decimal point follows the	age input is s nge high limit selection or in	lected in［Input type］． The placement of the put range．）
$\begin{aligned} \text { 4F } \\ -\operatorname{BOD} \end{aligned}$	Scaling low lim －Sets scaling －Available whe －Setting range：	mit low limit value． direct current or DC volta ：Input range low limit to Sca decimal point follows the	age input is s aling high limit selection or in	lected in［Input type］． The placement of the put range．）

Character Factory Default	Setting Item，Function，Setting Range
$\begin{array}{r} A P \square \\ \square \square \end{array}$	Decimal point place －Selects decimal point place． －Available when direct current or DC voltage input is selected in［Input type］． －\square ：No decimal point \square ： 1 digit after decimal point م10： 2 digits after decimal point RO日： 3 digits after decimal point
$\begin{array}{c:c} \hline F: 1 \\ B G \end{array}$	PV filter time constant －Sets PV filter time constant． If the value is set too large，it affects alarm action due to the delay of response． －Setting range： 0.0 to 10.0 sec
$\begin{aligned} & \text { BI IF } \\ & ----1 \end{aligned}$	A1 type －Selects an A1 type．See Section 7.1 （p．27）． －If A1 type is changed，A1 value will default to $0(0.0)$ ． －－－－－：No alarm action H－：High limit alarm 1－：Low limit alarm H】ப：High limit with standby alarm 1．\quad ：Low limit with standby alarm
$\begin{aligned} & \text { BL EF } \\ & ---- \end{aligned}$	A2 type －Selects an A2 type．See Section 7.1 （p．27）． Not available if Insulated power output（P24 option or P5 option）is ordered． －If A2 type is changed，A2 value will default to $0(0.0)$ ． －－－－－No alarm action $H \square:$ High limit alarm $1 \square$ ：Low limit alarm HエI：High limit with standby alarm $\square \quad$ ： ：Low limit with standby alarm
$\begin{aligned} & B_{1} Z F \\ & ---- \end{aligned}$	A3 type －Selects an A3 type．See Section 7.1 （p．27）． －If A3 type is changed，A3 value will default to $0(0.0)$ ． －－－－－：No alarm action $H \square:$ High limit alarm －\quad ：Low limit alarm H \quad ：High limit with standby alarm $\therefore \quad \leq$ ：Low limit with standby alarm ：I：High／Low limit range alarm［See Section 7.2 （p．28）．］

Character Factory Default	Setting Item，Function，Setting Range
Fil 4 F	A4 type －Selects an A4 type．See Section 7.1 （p．27）． Available when Alarm 4 output（A4 option）is ordered． －If A4 type is changed，A4 value will default to $0(0.0)$ ． －－－－－：No alarm action H■：High limit alarm 1．Low limit alarm $H \square \leq:$ High limit with standby alarm ：\quad ：Low limit with standby alarm II：High／Low limit range alarm［See Section 7.3 （p．28）．］
$\begin{aligned} & \text { A } \bar{\prime} \\ & \text { noin } \end{aligned}$	A1 Energized／De－energized －Selects A1 Energized／De－energized． Not available if No alarm action is selected in［A1 type］． －When［A1 Energized］is selected，A1 output（terminals 7，8）is conducted（ON） while A1 action indicator is lit． A1 output is not conducted（OFF）while A1 action indicator is unlit． When［A1 De－energized］is selected，A1 output（terminals 7，8）is not conducted （OFF）while A1 action indicator is lit． A1 output is conducted（ON）while A1 action indicator is unlit． A1 output will be substituted by $\mathrm{A} 2, \mathrm{~A} 3$ or A 4 output． A1 output terminals will be substituted by A2，A3 or A4 output terminals as follows． A2 output terminals：9， 10 A3 output terminals：12， 13 A4 output terminals：15， 16 （Fig．5．4－1） （Fig．5．4－2） －Maール！：Energized ，Eム＇，De－energized
BE゙に のロッi	A2 Energized／De－energized －Selects A2 Energized／De－energized． Not available if No alarm action is selected in［A2 type］． Not available if Insulated power output（P24 option or P5 option）is ordered． －naスil ：Energized －Eば，：De－energized
日ジに のローi	A3 Energized／De－energized －Selects A3 Energized／De－energized． Not available if No alarm action or High／Low limit range alarm is selected in［A3 type］． －nainí：Energized －Eばㅇ․ ：De－energized

Character Factory Default	\quad Setting Item, Function, Setting Range

Character Factory Default	Setting Item, Function, Setting Range	
$\begin{array}{r} \text { RラロG } \\ \square 8 \end{array}$	A3 delay time - Sets A3 action delay tim When setting time has alarm is activated. - Not available if No alarm [A3 type]. - Setting range: 0 to 1000	apsed after the input enters the alarm output range, the action or High/Low limit range alarm is selected in seconds
$\begin{aligned} 840 \\ 88 \end{aligned}$	A4 delay time - Sets A4 action delay tim When setting time has alarm is activated. - Available when Alarm 4 Not available if No alarm - Setting range: 0 to 1000	psed after the input enters the alarm output range, the utput (A4 option) is ordered. action is selected in [A4 type]. seconds
$\begin{aligned} \hline 5, H \\ B C H \end{aligned}$	Transmission output 1 high limit - Sets the Transmission output 1 high limit value. Standard	
	4-20 mA DC	Equals $20 \mathrm{~mA} \mathrm{DC} \mathrm{output}$.
	Optional	
	0-20 mA DC	Equals $20 \mathrm{~mA} \mathrm{DC} \mathrm{output}$.
	0-1 V DC	Equals 1 V DC output.
	0-5 V DC, 1-5V DC	Equals 5 V DC output.
	0-10 V DC	Equals 10 V DC output.
	- Setting range: Transmission output 1 low limit to Input range high limit (The placement of the decimal point follows the selection or input range.)	
$\begin{array}{\|l\|} \hline 5-1 \\ -B O B \end{array}$	Transmission output 1 low limit - Sets the Transmission output 1 low limit value. Standard	
	4-20 mA DC	Equals $4 \mathrm{~mA} \mathrm{DC} \mathrm{output}$.
	Optional	
	0-20 mA DC	Equals $0 \mathrm{~mA} \mathrm{DC} \mathrm{output}$.
	$\begin{aligned} & 0-1 \mathrm{~V} \text { DC, 0-5 V DC, } \\ & 0-10 \mathrm{~V} C \end{aligned}$	Equals 0 V DC output.
	1-5 V DC	Equals 1 V DC output.
	- Setting range: Input range low limit to Transmission output 1 high limit (The placement of the decimal point follows the selection or input range.)	
	Transmission output 2 high limit - Sets the Transmission output 2 high limit value. Available when Transmission output 2 (T $\square 2$ option) is ordered.	
	4-20 mA DC	Equals $20 \mathrm{~mA} \mathrm{DC} \mathrm{output}$.
	0-20 mA DC	Equals $20 \mathrm{~mA} \mathrm{DC} \mathrm{output}$.
	0-1 V DC	Equals 1 V DC output.
	0-5 V DC, 1-5V DC	Equals 5 V DC output.
	0-10 V DC	Equals 10 V DC output.
	- Setting range: Transmis placemen	on output 2 low limit to Input range high limit (The of the decimal point follows the selection or input range.)

Character Factory Default	Setting Item, Function, Setting Range
$\begin{aligned} & \hline-B Z \\ & -B O Z \end{aligned}$	Transmission output 2 low limit - Sets the Transmission output 2 low limit value. Available when Transmission output 2 (T $\square 2$ option) is ordered. - Setting range: Input range low limit to Transmission output 2 high limit (The placement of the decimal point follows the selection or input range.)
Hold Hold	Event input function - Selects Event input function. Not available if Serial communication (C5 option) is ordered. - Hola (HOLD): PV at the given time is held and indicated by closing Event input terminals (14, 17). The HOLD function is cancelled by opening the Event input terminals (14, 17). P_H (Peak HOLD): The updated maximum PV is indicated by closing Event input terminals $(14,17)$. The Peak HOLD function is cancelled by opening the Event input terminals $(14,17)$. b_h (Bottom HOLD): The updated minimum PV is indicated by closing Event input terminals $(14,17)$. The Bottom HOLD function is cancelled by opening Event input terminals $(14,17)$. Hid ((Alarm HOLD 1): If any of [A1 HOLD function] to [A4 HOLD function] is set to "Enabled", and if the alarm is ON, the alarm will be maintained by closing Event input terminals (14, 17). The Alarm HOLD function will be cancelled by opening Event input terminals $(14,17)$. While the Event input terminals $(14,17)$ are open, the Alarm HOLD function will be disabled. HI dE' (Alarm HOLD 2): If any of [A1 HOLD function] to [A4 HOLD function] is set to "Enabled", and if the alarm is ON, the alarm will be maintained by opening the Event input terminals $(14,17)$. The Alarm HOLD function will be cancelled by closing Event input terminals (14, 17). While the Event input terminals $(14,17)$ are closed, the Alarm HOLD function will be disabled.
A Ha MonE	A1 HOLD function - Enables/Disables the A1 HOLD function. Not available if No alarm action is selected in [A1 type]. - If A1 HOLD function is set to "Enabled", and if the alarm is ON, the alarm output ON status will be maintained until the following is conducted. - The FAST key is pressed for approx. 3 seconds. - The power is turned OFF. - The HOLD is cancelled by the Event input function. During A1 HOLD, the A1 action indicator flashes. - manE : Disabled Holdi: Enabled

Character Factory Default	Setting Item，Function，Setting Range
$\begin{aligned} & \text { REHG } \\ & \text { MONE } \end{aligned}$	A2 HOLD function －Enables／Disables the A2 HOLD function． Not available if No alarm action is selected in［A2 type］． Not available if Insulated power output（P24 option or P5 option）is ordered． －If A2 HOLD function is set to＂Enabled＂，and if the alarm is ON，the alarm output ON status will be maintained until the following is conducted． －The FAST key is pressed for approx． 3 seconds． －The power is turned OFF． －The HOLD is cancelled by the Event input function． During A2 HOLD，the A2 action indicator flashes． －monE：Disabled Hold：Enabled
日ミム』 nonE	A3 HOLD function －Enables／Disables the A3 HOLD function． Not available if No alarm action or High／Low limit range alarm is selected in［A3 type］． －If A3 HOLD function is set to＂Enabled＂，and if the alarm is ON，the alarm output ON status will be maintained until the following is conducted． －The FAST key is pressed for approx． 3 seconds． －The power is turned OFF． －The HOLD is cancelled by the Event input function． During A3 HOLD，the A3 action indicator flashes． －nonE：Disabled Hold：Enabled
$\begin{aligned} & \text { RHAG } \\ & \text { ManE } \end{aligned}$	A4 HOLD function －Enables／Disables the A4 HOLD function． Available when Alarm 4 output（A4 option）is ordered． Not available if No alarm action is selected in［A4 type］． －If A4 HOLD function is set to＂Enabled＂，and if the alarm is ON，the alarm output ON status will be maintained until the following is conducted． －The FAST key is pressed for approx． 3 seconds． －The power is turned OFF． －The HOLD is cancelled by the Event input function． During A4 HOLD，the A4 action indicator flashes． －manE：Disabled Hold：Enabled
$\begin{aligned} & \text { rooí } \\ & \text { mone } \end{aligned}$	Square root function －Enables／Disables the square root extraction function． －Indication value or square root extraction value is expressed by the formula below． $P V^{\prime}=\sqrt{P V}$ PV＇：Indication value，square root extraction value PV：Process variable －manE：Disabled U－G：Enabled
$\begin{gathered} 1-1 / i \\ \square \end{gathered}$	Low level cutoff －Sets the low level cutoff value． －When PV input is near 0 （zero）， the result of square root extraction changes considerably with only a very small change of input． In this case，the PV is forced to become 0 （zero）． If $P V$ input is lower than the low level cutoff value，the PV will become 0 ． －Setting range： 0.0 to 25.0% of input range （e．g．）Input：4－20 mA DC，Scaling range：0－100 Low level cutoff：1．0\％ In this case，PV becomes 0 if it is lower than 1.0% ．

5.5 Maintenance Mode

To enter Maintenance mode, press the UP and FAST keys (in that order) together for approx. 5 seconds in PV/SV Display Mode.
If the unit enters Maintenance mode, all outputs are forced to turn OFF.

Character Factory Default	Setting Item, Function, Setting Range
$\begin{aligned} & \overline{A R I} \\ & 0 F F \end{aligned}$	A1 output ON/OFF - A1 output can be turned ON by the UP key, and OFF by the DOWN key. - ofF: Output OFF an. a : Output ON
$\begin{aligned} & \therefore R E \\ & G F F \end{aligned}$	A2 output ON/OFF - A2 output can be turned ON by the UP key, and OFF by the DOWN key. Not available if Insulated power output (P24 option or P5 option) is ordered. - orF: Output OFF an】: Output ON
$\begin{aligned} & \therefore B Z \\ & \square F F \end{aligned}$	A3 output ON/OFF - A3 output can be turned ON by the UP key, and OFF by the DOWN key. - orF: Output OFF an】: Output ON
$\begin{aligned} & \pi \beta 4 \\ & \square F F \end{aligned}$	A4 output ON/OFF - A4 output can be turned ON by the UP key, and OFF by the DOWN key. Available when Alarm 4 output (A4 option) is ordered. - orF: Output OFF an-: Output ON
	Transmission output 1 manual output - Sets output amount of Transmission output 1. - Setting range: 0.0 to 100.0%
	Transmission output 2 manual output - Sets output amount of Transmission output 2. Available when Transmission output 2 (T $\square 2$ option) is ordered. - Setting range: 0.0 to 100.0%

6. Operation

6.1 Operation

After the JIR-301-M is mounted to the control panel and wiring is completed, operate the unit following the procedure below.
(1) Turn the power supply to the JIR-301-M ON.

For approximate 3 sec after the power is switched ON, the input characters and the temperature unit are indicated on the PV Display, and input range high limit (thermocouple, RTD input) or scaling high limit (Direct current, DC voltage input) is indicated on the SV Display. See (Table 5-1) (p.13).
During this time, all outputs and LED indicators are in an OFF status.
After that, Indication starts, indicating PV on the PV Display, and A1, A2, A3 or A4 value on the SV Display.
(2) Enter each set value.

Enter each set value, referring to Section " 5 . Setup".

6.2 Switching SV Display Indication

To change indication on the SV Display, press the UP and MODE keys (in that order) together in the PV/SV Display Mode. The next alarm value (of the currently indicated A1-A4 value) will be displayed. If the UP and MODE keys (in that order) are pressed together at [A4 value indication], the unit reverts to [A1 value indication].

Indication	Setting Item, Function
PV	A1 value indication A1 value - Indicates A1 value on the SV Display, and the A1 value indicator is lit. Not available if No alarm action is selected in [A1 type].
PV	A2 value indication A2 value - Indicates A2 value on the SV Display, and the A2 value indicator is lit. Not available if No alarm action is selected in [A2 type]. Not available if Insulated power output (P24 option or P5 option) is ordered.
PV A3 value	A3 value indication - Indicates A3 value on the SV Display, and the A3 value indicator is lit. Not available if No alarm action or High/Low limit range alarm is selected in [A3 type].
PV	A4 value indication A4 value - Indicates A4 value on the SV Display, and the A4 value indicator is lit. If High/Low limit range alarm is selected in [A4 type], the SV Display indicates A4 low limit value. While the UP key is pressed, the SV Display indicates A4 high limit value. - Available when Alarm 4 output (A4 option) is ordered. Not available if No alarm action is selected in [A4 type].

6.3 How to Use the Alarm Output

(e.g.) To use A1 output, follow the procedure below.
(1) Select an A1 type in [A1 type] (p.19) in Auxiliary function setting mode 2.
(2) Set the following items in Auxiliary function setting mode 2 if required:

A1 Energized/De-energized (p.20), A1 hysteresis (p.21),
A1 delay time (p.21), A1 HOLD function (p.23)
(3) Set the A1 value in [A1 value (p.14)] in Alarm setting mode.

A1 output settings are complete.
The same applies to A2, A3 and A4 output.

6.4 How to Use the Event Input Function

(e.g.) To use Peak HOLD of the Event input function, follow the procedure below.
(1) Select Peak HOLD in [Event input function (p.23)] in Auxiliary function setting mode 2.
(2) The updated maximum PV is indicated by closing Event input terminals $(14,17)$. The Peak HOLD function is cancelled by opening Event input terminals (14, 17).

7. Alarm Action

7.1 High Limit Alarm, Low Limit Alarm

	High limit alarm	Low limit alarm
A1 action	A1 hysteresis	A1 hysteresis
A1 output	淮:	
	High limit with standby alarm	Low limit with standby alarm
A1 action		A1 hysteresis
A1 output	\%	\%

$\square:$ A1 output terminals $(7,8)$ ON
$\because:$: A1 output terminals $(7,8)$ ON or OFF
\square : A1 output terminals $(7,8)$ OFF
C/C : A1 output is in standby.

- The following terminal numbers are used for respective alarm outputs.

A2 output terminals: 9, 10
A3 output terminals: 12,13
A4 output terminals: 15, 16

- A1, A2, A3 or A4 action indicator is lit when each output terminals are ON.

A1, A2, A3 or A4 action indicator is turned off when its output terminals are OFF.

7.2 A3 High/Low Limit Range Alarm Action

	High/Low limit range alarm
A1, A2, A3 action	
A3 output	脽:

[^0]A3 High/Low limit range alarm action is determined by setting A 1 value and A 2 value.
A3 is activated (ON) when both A1 and A2 are OFF - by combining A1 High limit alarm (or High limit with standby alarm) and A2 Low limit alarm (or Low limit with standby alarm) and vice versa.
When standby function, hysteresis or delay time for A1 and A2 are set, check the below A3 action.

Please note the following:

- If A1 or A2 with standby alarm is selected, A3 is turned ON while A1 or A2 is in standby.
- If A1 or A2 hysteresis increases, A3 ON span decreases.
- When A1 or A2 delay time (setting time) increases, A3 ON time increases.
- If A1 or A2 delay time (setting time) is set, while A1 or A2 delay time is working (when power to the instrument is turned ON), A 3 is turned ON .

7.3 A4 High/Low Limit Range Alarm Action

When High/Low limit range alarm is selected in [A4 type]:

(Fig. 7.3-1)

8. Specifications

8.1 Standard Specifications

Rating

Input		, B, E, T, N, PL-II, C(W/Re5resistance: 100Ω max. (Ho t100 3-wire type e input lead wire resistance: DC, 4-20 mA DC (Select an e in shunt resistor.) edance: 50Ω e input current: $50 \mathrm{~mA} \mathrm{DC} \mathrm{max}$. pedance: $1 \mathrm{M} \Omega \mathrm{min}$. e input voltage: 5 V DC max. e signal source resistance: 2 $1-5 \mathrm{~V}$ DC, 0-10 V DC pedance: $100 \mathrm{k} \Omega \mathrm{min}$. e input voltage: 15 V DC max e signal source resistance: 1	ver, B input: 40Ω max.) Ω max. per wire ernally mounted shunt resistor max. $\Omega \max$.
Power supply voltage	Model Power supply voltage Allowable voltage fluctuation range	JIR-301-M 100 to 240 V AC $50 / 60 \mathrm{~Hz}$ 85 to 264 V AC	JIR-301-M 1 $24 \mathrm{~V} \mathrm{AC/DC} 50 / 60 \mathrm{~Hz}$ 20 to $28 \mathrm{~V} \mathrm{AC/DC}$

General Structure

Dimensions	$96 \times 48 \times 110 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
Mounting	Flush (Mountable panel thickness: 1 to 8 mm)
Material	Case: Flame-resistant resin, Color: Light gray
Drip-proof/Dust-proof	IP66 (for front panel only)
Setting method	Input system using membrane sheet key
Display	PV Display: Red LED 5-digits, Character size, $16 \times 7.2 \mathrm{~mm}(\mathrm{H} \times \mathrm{W})$ SV Display: Green LED 5-digits, Character size, $10 \times 4.8 \mathrm{~mm}(\mathrm{H} \times$ W)

Indication Performance

Indication accuracy	Thermocouple	Within $\pm 0.2 \%$ of each input span ± 1 digit, or within $\pm 2^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{F}\right)$, whichever is greater However, R, S input, 0 to $200^{\circ} \mathrm{C}$ (32 to $392^{\circ} \mathrm{F}$): Within $\pm 6^{\circ} \mathrm{C}(12 \mathrm{~F})$ B input, 0 to $300^{\circ} \mathrm{C}$ (32 to $572^{\circ} \mathrm{F}$): Accuracy is not guaranteed. K, J, E, T, N input, Less than $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$: Within $\pm 0.4 \%$ of each input span ± 1 digit
	RTD	Within $\pm 0.1 \%$ of each input span ± 1 digit, or within $\pm 1^{\circ} \mathrm{C}(2 \mathrm{~F})$, Whichever is greater
	Direct current, DC voltage	Within $\pm 0.2 \%$ of each input span ± 1 digit
Input sampling period		125 ms

Standard Function

$\left.\begin{array}{|l|l|}\hline \text { A1 output, } \\ \text { A2 output, } \\ \text { A3 output }\end{array} \quad \begin{array}{l}\text { The alarm action point can be set at random (process alarm), and if the input } \\ \text { reaches the randomly set action point, the alarm output turns ON or OFF } \\ \text { corresponding to the alarm type and Energized/De-energized selection. } \\ \text { The alarm type can be selected from; No alarm action, High limit alarm, Low limit } \\ \text { alarm, High limit with standby alarm, Low limit with standby alarm and High/Low } \\ \text { limit range alarm (for A3 output only). } \\ \text { High/Low limit range alarm can be selected when A1 High limit alarm (High limit } \\ \text { with standby alarm) and A2 Low limit alarm (Low limit with standby alarm) are } \\ \text { combined, or when A1 Low limit alarm (Low limit with standby alarm) and A2 } \\ \text { High limit alarm (High limit with standby alarm) are combined. }\end{array}\right\}$

Insulation, Dielectric Strength

| Circuit insulation configuration | CPU
 Input
 Power for
 2-wire transmitter
 Not insulated
 Alarm output 1
 Alarm output 2
 Insulated power output
 P5/P24
 Alarm output 3
 Alarm output 4\begin{tabular}{l}
\hline
\end{tabular} | | Ground terminal
 Power supply
 Transmission output 1
 Communication
 Event input
 Transmission output 2
 Not insulated |
| :---: | :---: | :---: | :---: |
| Insulation resistance | $10 \mathrm{M} \Omega$ or more, at 500 V DC | | |

Dielectric	Input terminal and ground terminal:	1.5 kV AC for 1 minute
strength	Input terminal and power terminal:	1.5 kV AC for 1 minute
	Power terminal and ground terminal: 1.5 kV AC for 1 minute	
	Output terminal and ground terminal: 1.5 kV AC for 1 minute	
	Output terminal and power terminal: 1.5 kV AC for 1 minute	
	(Output terminals: A1, A2, A3 and A4 output terminals, Transmission output 1	
terminals, Transmission output 2 terminals and communication terminals)		

Attached Function

Input error indication	- Direct current, DC voltage input If measured value exceeds Indication range high limit value, the PV Display flashes and if measured value drops below the Indication range low limit value, the PV Display flashes \qquad Indication range: [Scaling low limit value - Scaling span $\times 1 \%$] to [Scaling high limit value + Scaling span $\times 10 \%$] DC input disconnection: When DC input is disconnected, the PV Display flashes \qquad for 4 to 20 mADC and 1 to 5 V DC input, and \square for 0 to 1 V DC input. For 0 to 20 mA DC, 0 to 5 V DC and 0 to 10 V DC input, the PV Display indicates the value corresponding with 0 mA or 0 V .	
Set value lock	Locks the set values to prevent setting errors. (p.15)	
Sensor correction coefficient	Sets slope of input value from a sensor.	
Sensor correction	Corrects the input value from a sensor. (p.15)	
Power failure countermeasure	The setting data is backed up in the non-volatile IC memory.	
Self-diagnosis	The CPU is monitored by a watchdog timer, and if an abnormal status is found on the CPU, the JIR-301-M is switched to warm-up status.	
Automatic cold junction temp. compensation	This detects the temperature at the connecting terminal between the thermocouple and the instrument, and always maintains it at the same status as if the reference junction location temperature was at $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$.	
Event input function	Selects Event input function from 3 types of HOLD function and 2 types of Alarm HOLD function. Not available if Serial communication (C5 option) is ordered.	
	HOLD	PV (indicated value only) at the given time is held and indicated by closing Event input terminals (14, 17). The HOLD function is cancelled by opening Event input terminals (14, 17).
	Peak HOLD	The updated maximum PV is indicated by closing Event input terminals (14, 17). The Peak HOLD function is cancelled by opening Event input terminals $(14,17)$.
	Bottom HOLD	The updated minimum PV is indicated by closing Event input terminals $(14,17)$. The Bottom HOLD function is cancelled by opening Event input terminals $(14,17)$.
	Alarm HOLD 1	If any of [A1 HOLD function] to [A4 HOLD function] is set to "Enabled", and if the alarm is ON, the alarm will be maintained by closing Event input terminals $(14,17)$. The alarm HOLD function will be cancelled by opening Event input terminals $(14,17)$. While Event input terminals $(14,17)$ are open, the alarm HOLD function will be disabled.
	Alarm HOLD 2	If any of [A1 HOLD function] to [A4 HOLD function] is set to "Enabled", and if the alarm is ON, the alarm will be maintained by opening Event input terminals $(14,17)$. The alarm HOLD function will be cancelled by closing Event input terminals $(14,17)$. While Event input terminals $(14,17)$ are closed, the alarm HOLD function will be disabled.
Warm-up indication	After power is turned ON, the input characters and temperature unit will be indicated on the PV Display, and the input range high limit (for thermocouple, RTD input) or scaling high limit (for direct current, DC voltage input) will be indicated on the SV Display for approx. 3 sec.	

Other

Power consumption		
	Supply Voltage	Power Consumption
	100 to 240 V AC	Approx. 8 VA (When maximum options are ordered: Approx. 10 VA)
	24 V AC	Approx. 6 VA (When maximum options are ordered: Approx. 9 VA)
	24 V DC	Approx. 4 W (When maximum options are ordered: Approx. 7 W)
Ambient temperature	0 to $50^{\circ} \mathrm{C}$ (32 to 122 F)	
Ambient humidity	35 to 85% RH (non-condensing)	
Altitude	2,000 m or less	
Weight	Approx. 300 g	
Accessories	Screw type mounting brackets (1 set), Instruction manual excerpt (1 copy), Unit label (1 label), Terminal cover (1 piece, When the TC option is ordered)	

8.2 Optional Specifications

Serial communication (C5 option)	When the C5 option is ordered, the Event input function cannot be used. The following operations can be carried out from an external computer. - Reading and setting of various set values - Reading of PV and action status - Function change			
	Communication line	EIA RS-485		
	Communication method	Half-duplex communication		
	Communication speed	2400, 4800, 9600, 19200, 38400 bps		
	Synchronization method	Start-stop synchronization		
	Parity	Even, Odd , No parity (Selectable by keypad)		
	Stop bit	1, 2 (Selectable by keypad)		
	Communication protocol	Shinko protocol, MODBUS ASCII, MODBUS RTU In addition, each protocol above is available with Block Read/Write. (Selectable by keypad)		
	Connectable number of units	Maximum 31 units to 1 host computer		
	Communication error detection	Double detection by parity and checksum		
	Data format			
	Communication protocol	Shinko protocol	MODBUS ASCII	MODBUS RTU
	Start bit	1	1	1
	Data bit (*1)	7	7	8
	Parity	Even	Selection [Even] (*2)	Selection [No parity] (*2)
	Stop bit	1	$\begin{aligned} & \text { Selection } \\ & {[1] \text { (*2) }} \end{aligned}$	$\begin{aligned} & \text { Selection } \\ & {[1] \text { (*2) }} \end{aligned}$
	(*1) Data bit is automatically selected upon selecting the communication protocol. (*2) []: Basic set value			
Alarm 4 output (A4 option)	This option and Transmission output 2 (T $\square 2$ option) cannot be used together. Alarm type, alarm action and alarm output are the same as those of A1, A2 and A3 output except High/Low limit range alarm.			

Insulated power output (P24 option)	If this option is ordered, the A2 function will be disabled. This option cannot be used with the Insulated power output (P5 option) together, or cannot be used with Power for 2-wire transmitter (DSB option) together.		
	Output voltage		$24 \pm 3 \mathrm{~V}$ DC (When load current is 30 mA)
	Ripple voltage		Within 200 mV DC (When load current is 30 mA)
	Max load current		30 mA DC
Insulated power output (P5 option)	If this option is ordered, the A2 function will be disabled. This option cannot be used with the Insulated power output (P24 option) together, or cannot be used with Power for 2-wire transmitter (DSB option) together.		
	Output voltage		$5 \pm 0.5 \mathrm{~V}$ DC (When load current is 30 mA)
	Ripple voltage		Within 200 mV DC (When load current is 30 mA)
	Max load current		30 mA DC
Power for 2-wire transmitter (DSB option)	If this option is ordered, only 4 to 20 mADC input (Built-in 50Ω shunt resistor) can be used. This option cannot be used with the Insulated power output (P24 option or P5 option) together.		
	Output voltage		$24 \pm 3 \mathrm{~V}$ DC (When load current is 30 mA)
	Ripple voltage		Within 200 mV DC (When load current is 30 mA)
	Max load current		30 mA DC
Transmission output 2 (T $\square 2$ option)	This option cannot be used with Alarm 4 output (A4 option) together.		
	Resolution		12000
	Output accuracy		Within $\pm 0.3 \%$ of transmission output span
	Response time		$400 \mathrm{~ms}+$ Input sampling period ($0 \% \rightarrow 90 \%$)
	Option Code	Transmission Output Type	
	TA2 (4-20)	Direct current	4 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(Load} \mathrm{resistance:} \mathrm{Max} 550 \Omega$)
	TA2 (0-20)		0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(Load} \mathrm{resistance:} \mathrm{Max} 550$)
	TV2 (0-1)	DC voltage	0 to 1 V DC (Load resistance: Minimum 100 k)
	TV2 (0-5)		0 to 5 V DC (Load resistance: Minimum $500 \mathrm{k} \Omega$)
	TV2 (1-5)		1 to 5 V DC (Load resistance: Minimum 500 k)
	TV2 (0-10)		0 to 10 V DC (Load resistance: Minimum 1 M)
User specified Transmission output (TA, TV option)	Standard Transmission output can be changed to the following 'User specified Transmission output'.		
	Option Code	Transmission Output Type	
	TA (0-20)	Direct current	0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(Load} \mathrm{resistance:} \mathrm{Max} 550$)
	TV (0-1)	DC voltage	0 to 1 V DC (Load resistance: Minimum $100 \mathrm{k} \Omega$)
	$\begin{array}{\|l} \hline \text { TV (0-5) } \\ \hline \text { TV (1-5) } \\ \hline \end{array}$		0 to 5 V DC (Load resistance: Minimum $500 \mathrm{k} \Omega$)
			1 to 5 V DC (Load resistance: Minimum 500 k)
	TV (0-10)		0 to 10 V DC (Load resistance: Minimum 1 M)
Color Black (BK option)	Panel: Dark gray Case: Black		
Terminal cover (TC option)	Electrical shock protection terminal cover		

9. Troubleshooting

If any malfunctions occur, refer to the following items after checking that power is being supplied to the JIR-301-M.

Problem	Possible Cause	Solution
The PV Display indicates Err i.	Internal memory is defective.	Contact us or our agency in your region.
The PV Display indicates \square	Burnout of thermocouple, RTD or disconnection of DC voltage (0 to 1 V DC)	Replace each sensor. How to check whether the sensor is burnt out [Thermocouple] If the input terminals of the instrument are shorted, and if a value around room temperature is indicated, the instrument is likely to be operating normally, however, the sensor may be burnt out. [RTD] If approx. 100Ω of resistance is connected to the input terminals between $A-B$ of the instrument and between B-B is shorted, and if a value around $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ is indicated, the instrument is likely to be operating normally, however, the sensor may be burnt out. [DC voltage (0 to 1 V DC)] If the input terminals of the instrument are shorted, and if a scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected.
	Check whether the input terminals of thermocouple, RTD or DC voltage (0 to 1 V DC) are securely connected to the instrument input terminals.	Connect the sensor terminals to the instrument input terminals securely.
The PV Display flashes \qquad	Check whether input signal wire for DC voltage (1 to 5 V DC) or direct current (4 to 20 mADC) is disconnected.	How to check whether the input signal wire is disconnected [DC voltage (1 to 5 V DC)] If the input to the input terminals of the instrument is $1 \mathrm{~V} D C$ and if a scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected. [Direct current (4 to 20 mA DC)] If the input to the input terminals of the instrument is 4 mADC and if a scaling low limit value is indicated, the instrument is likely to be operating normally, however, the signal wire may be disconnected.
	Check whether input signal wire for DC voltage (1 to 5 V DC) or direct current (4 to 20 mA DC) is securely connected to the instrument input terminals.	Ensure that the input signal wire is securely connected to the instrument input terminals.
	Check if polarity of thermocouple or compensating lead wire is correct. Check whether codes (A, B, B) of RTD agree with the instrument terminals.	Wire them correctly.

Problem	Possible Cause	Solution
The PV Display keeps indicating the value set in [Scaling low limit].	Check whether the input signal wires of DC voltage (0 to 5 V $\mathrm{DC}, 0$ to 10 V DC) and direct current (0 to 20 mADC) is disconnected.	How to check whether the input signal wire is disconnected [DC voltage (0 to 5 V DC, 0 to 10 V DC)] If the input to the input terminal of this instrument is 1 VDC , and if a value (converted value from scaling high, low limit setting) corresponding to 1 V DC is indicated, the instrument is likely to be operating normally, however, the input signal wire may be disconnected. [Direct current (0 to 20 mA DC)] If the input to the input terminal of this instrument is 4 mADC , and if a value (converted value from scaling high, low limit setting) corresponding to 4 mA DC is indicated, the instrument is likely to be operating normally, however, the input signal wire may be disconnected.
	Check whether the input terminals of DC voltage (0 to 5 V DC, 0 to 10 V DC) or direct current (0 to 20 mA DC) are securely connected to the instrument input terminals.	Connect the input terminals of DC voltage and current to the input terminals of this instrument securely.
The indication of PV Display is irregular or unstable.	Check whether sensor input or temperature unit (${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$) is correct.	Select the sensor input and temperature unit (${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$) correctly.
	Sensor correction coefficient or Sensor correction value is unsuitable.	Set them to suitable values.
	Check whether the sensor specification is correct.	Use a sensor with appropriate specifications.
	AC leaks into the sensor circuit.	Use an ungrounded type sensor.
	There may be equipment that interferes with or makes noise near the instrument.	Keep the instrument clear of any potentially disruptive equipment.
Values on the PV Display do not change.	Terminals 14 and 17 are closed, and the HOLD function is working.	Cancel the HOLD function by opening terminals 14 and 17.
Even if the UP key or DOWN key is pressed, values do not change.	Set value lock (Lock 1 or Lock 2) is selected.	Release the lock in [Set value lock].

10. Character Table

Depending on the model and setting contents, some setting items do not appear.

10.1 Alarm Setting Mode

If the MODE key is pressed in PV/SV Display Mode, the unit will move to Alarm setting mode.

Character Factory Default	Setting Item, Function, Setting Range
$\begin{aligned} & B!\square \\ & \square \square \square \end{aligned}$	A1 value - Refer to (Table 10.1-1).
$\begin{aligned} & B Z \square \square \\ & \square \square \end{aligned}$	A2 value - Refer to (Table 10.1-1).
$\begin{aligned} & B 7 \square \\ & \square \square \end{aligned}$	A3 value - Refer to (Table 10.1-1).
$\begin{aligned} & 154 \square \\ & \square \square \end{aligned}$	A4 value - Refer to (Table 10.1-1).
$\begin{aligned} & \text { R4H } \\ & \square \square \square \end{aligned}$	A4 high limit value - Refer to (Table 10.1-1).

(Table 10.1-1)

Alarm Type	Setting Range
High limit alarm	Input range low limit to input range high limit (*1)
Low limit alarm	Input range low limit to input range high limit (*1)
High limit with standby alarm	Input range low limit to input range high limit (*1)
Low limit with standby alarm	Input range low limit to input range high limit (*1)
High/Low limit range alarm (A4)	A4 low limit value: Input range low limit (*2) to A4 high limit A4 high limit value: A4 low limit to input range high limit (*3)

- The placement of the decimal point follows the selection or input range.
(*1) For direct current and DC voltage input: Setting range is [Scaling low limit to Scaling high limit].
(*2) For direct current and DC voltage input: Will be substituted by the Scaling low limit.
(*3) For direct current and DC voltage input: Will be substituted by the Scaling high limit.

10．2 Auxiliary Function Setting Mode 1

To enter Auxiliary Function Setting Mode 1，press and hold the DOWN key and MODE key（in that order） together for approx． 3 seconds in PV／SV Display Mode．

Character Factory Default	Setting Item，Function，Setting Range
Loct	Set value lock －－－－（Unlock）：All set values can be changed． Lar ：（Lock 1）：None of the set values can be changed． LaEZ（Lock 2）：Only Alarm setting mode（p．14）can be changed． －ロロコ（Lock 3）：All set values－except the input type（p．18）－can be changed． However，changed values revert to their previous value after power is turned off because they are not saved in the non－volatile IC memory．Do not change any setting items in Auxiliary function setting mode 2 （pp．18－24）．If any item is changed in Auxiliary function setting mode 2 ，it will affect the alarm value（A1 value－A4 value）．
401 ！	Sensor correction coefficient －Setting range：－ 10.000 to 10.000
$\begin{aligned} & 40 \square \\ & \square Q a \end{aligned}$	Sensor correction －Setting range：－1000．0 to $1000.0^{\circ} \mathrm{C}$（ F ） Direct current，DC voltage input：－10000 to 10000 （The placement of the decimal point follows the selection．）
$\begin{aligned} & \text { giti } \\ & \text { noin } \end{aligned}$	Communication protocol －nail ：Shinko protocol ন̄ぃ』і：MODBUS ASCII mode Fiodir：MODBUS RTU mode Lゥッí：Shinko protocol（Block Read／Write available） ฉーゥ』Я：MODBUS ASCII mode（Block Read／Write available） にデーir ：MODBUS RTU mode（Block Read／Write available）
ローデロロ $\square \square$	Instrument number －Setting range： 0 to 95
$\begin{array}{r} \boxed{-\pi}+9 \\ 96 \end{array}$	Communication speed －ご＇： 2400 bps $4 \mathrm{~B}: 4800 \mathrm{bps}$ 96： 9600 bps 192＇： 19200 bps 584： 38400 bps
$\begin{aligned} & E_{n} F_{r} \\ & E_{H E} \end{aligned}$	Parity －namE：No parity EムEn：Even add：Odd
にスル!	Stop bit $\begin{array}{r} \square 1: 1 \text { bit } \\ \square Z^{\prime}: 2 \text { bits } \end{array}$

10．3 Auxiliary Function Setting Mode 2

To enter Auxiliary Function Setting Mode 2，press and hold the UP，DOWN and MODE keys（in that order）together for approx． 3 seconds in PV／SV Display Mode．

Character Factory Default	Setting Item，Function，Setting Range			
$\begin{aligned} & 4 E_{n} t \\ & 1 \square \square \end{aligned}$	Input type （Table 10．3－1）			
		Input Range	Character	Input Range
	1 L	K－200 to $1370^{\circ} \mathrm{C}$	1 F	K－320 to $2500{ }^{\circ} \mathrm{F}$
	15	K－200．0 to $400.0^{\circ} \mathrm{C}$	1 F	K－200．0 to 750．0 ${ }^{\circ}$
	$\square 1$	J－200 to $1000{ }^{\circ} \mathrm{C}$	WF	J－320 to $1800{ }^{\circ}$
	－TE	R 0 to $1760^{\circ} \mathrm{C}$	－F	R 0 to $3200{ }^{\circ}$
	40	S 0 to $1760^{\circ} \mathrm{C}$	$4 \square F$	S 0 to $3200{ }^{\circ}$
	b－E	B 0 to $1820^{\circ} \mathrm{C}$	$b \square F$	B 0 to $3300{ }^{\circ}$
	EXE	E－200 to $800^{\circ} \mathrm{C}$	$E \square$	E－320 to 1500 F
	Γ	T－200．0 to $400.0^{\circ} \mathrm{C}$	F．F	T－200．0 to 750．0\％
	$\square \mathrm{CL}$	N－200 to $1300^{\circ} \mathrm{C}$	กTF	N－320 to $2300{ }^{\circ} \mathrm{F}$
	PGE	PL－II 0 to $1390^{\circ} \mathrm{C}$	PEF	PL－II 0 to 2500 F
	$\square \mathrm{L}$	C（W／Re5－26） 0 to $2315^{\circ} \mathrm{C}$	$\square \mathrm{F}$	C（W／Re5－26） 0 to 4200\％
	F＇r	Pt100－200．0 to 850．0 ${ }^{\circ} \mathrm{C}$	Fr ${ }_{\text {F }}$	Pt100－200．0 to 1000．0 ${ }^{\circ}$
	LFIE	JPt100－200．0 to 500．0 ${ }^{\circ} \mathrm{C}$	MFIF	JPt100－200．0 to 900．0F
	Fre	Pt100－200 to $850^{\circ} \mathrm{C}$	Prar	Pt100－300 to $1500{ }^{\circ}$
	LIFE	JPt100－200 to $500^{\circ} \mathrm{C}$	MFIF	JPt100－300 to 900\％
	$40 \square 8$	4－20 mA DC－2000 to 100	00 （Externally	mounted 50Ω shunt resistor）
	口こロ吅	0－20 mA DC－2000 to 1000	00 （Externally	mounted 50Ω shunt resistor）
	日治	0－1 V DC－2000 to 10000		
	П54	0－5 V DC－2000 to 10000		
	15日	$1-5$ V DC－2000 to 10000		
	日保は	0－10 V DC－2000 to 10000		
	4 B	4－20 mA DC－2000 to 100	000 （Built－in 50	O Ω shunt resistor）
	日ご	0－20 mA DC－2000 to 10	000 （Built－in 50	50Ω shunt resistor）
4 10日G日	Scaling high limit －Setting range：Scaling low limit to Input range high limit（＊）			
$\begin{aligned} & 42 \\ & -3000 \end{aligned}$	Scaling low limit －Setting range：Input range low limit to Scaling high limit（＊）			
BiP $\square \square$	Decimal point place \qquad 7 ：No decimal point \square ［10： 1 digit after decimal point 以保： 2 digits after decimal point CDOL： 3 digits after decimal point			
$\begin{array}{rl} F i & F \\ B L G \end{array}$	PV filter time constant －Setting range： 0.0 to 10.0 sec			
$F i$	A1 type －－－－－ No alarm action Hบ：High limit alarm ，－：Low limit alarm $H \triangle$ ：High limit with standby alarm $\square \quad \Sigma$ ：Low limit with standby alarm			

[^1]| Characters， Factory Default | Setting Item，Function，Setting Range |
| :---: | :---: |
| FHEF | A2 type
 －－－－－No alarm action
 H－T：High limit alarm
 1－：Low limit alarm
 H A ：High limit with standby alarm
 $1 \quad \mathrm{Z}$ ：Low limit with standby alarm |
| $\begin{aligned} & B L Z F \\ & ---- \end{aligned}$ | A3 type
 －－－－－：No alarm action H－：High limit alarm 1 \quad ：Low limit alarm Hロ A ：High limit with standby alarm $1 \quad \square$ ：Low limit with standby alarm al High／Low limit range alarm |
| $\begin{aligned} & B 14 F \\ & ---- \end{aligned}$ | A4 type
 －－－－－：No alarm action
 H－：High limit alarm
 1 \square ：Low limit alarm
 H H ：High limit with standby alarm
 $1 \quad \mathrm{~L}$ ：Low limit with standby alarm
 if ：High／Low limit range alarm |
| Fin のローシ | A1 Energized／De－energized
 －nanil ：Energized
 －Eば，：De－energized |
| Bごに のローシ | A2 Energized／De－energized
 －nローi！：Energized
 －Eは＇，：De－energized |
| Bジに のローシ | A3 Energized／De－energized －naĩ！：Energized －Eば，：De－energized |
| $\begin{aligned} & \text { RHi } \\ & \text { nañi } \end{aligned}$ | A4 Energized／De－energized
 －nロin ：Energized
 －Eばㄴ：De－energized |
| $\begin{aligned} & \hline B H \\ & \square 0 \end{aligned}$ | A1 hysteresis
 －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}$（ F ）
 Direct current，DC voltage input： 1 to 1000 （＊） |
| RE゙は
 $\square!$ | A2 hysteresis
 －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}$（ F ）
 Direct current，DC voltage input： 1 to 1000 （＊） |
| $\begin{array}{r} \text { RシHB } \\ \square \end{array}$ | A3 hysteresis
 －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}$（ F ）
 Direct current，DC voltage input： 1 to 1000 （＊） |
| $\begin{array}{r} \text { RナHE } \\ \square: G \end{array}$ | A4 hysteresis
 －Setting range： 0.1 to $100.0^{\circ} \mathrm{C}$（ F ）
 Direct current，DC voltage input： 1 to 1000 （＊） |

${ }^{*}$ ）The placement of the decimal point follows the selection．

| Characters, |
| :--- | :--- |
| Factory Default |\quad| A1 delay time |
| :--- |
| •Setting range: 0 to 10000 seconds |

${ }^{(*)}$ The placement of the decimal point follows the selection or input range.

Characters, Factory Default	Setting Item, Function, Setting Range
$\begin{aligned} & \text { FEHG } \\ & \text { ManE } \end{aligned}$	A2 HOLD function - nonE : Disabled Hold : Enabled
$\begin{aligned} & \text { ABHa } \\ & \text { manE } \end{aligned}$	A3 HOLD function - monE : Disabled Hold : Enabled
$\begin{aligned} & \text { FHHa } \\ & \text { MonE } \end{aligned}$	A4 HOLD function - manE : Disabled Hol : Enabled
$\begin{array}{\|l\|} \hline \text { rood } \\ \text { mone } \end{array}$	Square root function - manE : Disabled HME: Enabled
$\begin{gathered} 1-6 i \\ 0 \end{gathered}$	Low level cutoff - Setting range: 0.0 to 25.0% of input range

10.4 Maintenance Mode

To enter Maintenance mode, press the UP and FAST keys (in that order) together for approx. 5 seconds in PV/SV Display Mode.
If the unit enters Maintenance mode, all outputs are forced to turn OFF.

Characters, Factory Default	Setting Item, Function
$\begin{aligned} & \overrightarrow{A F i} \\ & \text { aFF } \end{aligned}$	A1 output ON/OFF - ofF: Output OFF an \square : Output ON
$\begin{aligned} & A R E \\ & \text { or } \end{aligned}$	A2 output ON/OFF - arF: Output OFF anप: Output ON
$\begin{aligned} & \pi B E \\ & a F F \end{aligned}$	A3 output ON/OFF - ofF: Output OFF an \quad Output ON
$\therefore 84$ ロFF	A4 output ON/OFF - ofF: Output OFF an- : Output ON
$\begin{aligned} \bar{n} I \\ 10 \end{aligned}$	Transmission output 1 manual output - Setting range: 0.0 to 100.0%
	Transmission output 2 manual output - Setting range: 0.0 to 100.0%

11．Key Operation Flowchart

［About setting item］

［About key operation］

－\triangle＋MODE：Press the Δ and mODE key（in that order）together．The unit will move to the next setting item， illustrated by an arrow．
－MODE：Press the MODE key．The unit will move to Alarm setting mode．
－$\nabla+\operatorname{MODE}(3 \mathrm{sec})$ ：Press and hold the ∇ and MODE key（in that order）together for approx． 3 sec ．The unit will move to Auxilary function setting mode 1.
－$\Delta+\nabla+$ MODE（ 3 sec ）：Press and hold the Δ, ∇ and mODE keys（in that order）together for approx． 3 sec ．The unit will move to Auxiliary function setting mode 2.
－\triangle＋FAST（ 5 sec ）：Press and hold the \triangle and FAST keys（in that order）together for approx． 5 sec ． The unit will move to Maintenance mode．

Alarm setting mode

Auxiliary function setting mode 1

bact	Set value lock
\downarrow MODE	
4ロt 1010	Sensor correc－ tion coefficient
\downarrow MODE	
$\begin{array}{r} 40 \square \\ 020 \end{array}$	Sensor correction
MODE	
$\begin{aligned} & \text { antil } \\ & \text { nanil } \end{aligned}$	Communication protocol
\downarrow MODE	
Ening	Instrument number
\downarrow MODE	
$\begin{array}{r} \text { にテレア } \\ \square 5 \end{array}$	Communication speed
MODE	
$\begin{aligned} & \text { ENFr } \\ & \text { EHEn } \end{aligned}$	Parity
\downarrow MODE	
	Stop bit
\downarrow mode	
Returns to PV／SV Display Mode	

For any inquiries about this unit, please contact our agency or the vendor where you purchased the unit. Please provide your model and serial number.
(e.g.)

- Model --------------- JIR-301-M
- Serial number ----- No. 165F05000

In addition to the above, please let us know the details of the malfunction, or discrepancy, and the operating conditions.

[^0]: : A1 output terminals (7, 8): OFF, A2 output terminals (9, 10): OFF, A3 output terminals $(12,13)$: ON

 ## ?

 : A1 output terminals $(7,8)$, A2 output terminals $(9,10)$ and A3 output terminals $(12,13)$: ON or OFF
 \square : A1 output terminals (7, 8): ON, A2 output terminals (9, 10): ON, A3 output terminals $(12,13)$: OFF

[^1]: $\left(^{*}\right)$ The placement of the decimal point follows the selection or input range．

