

without power supply, in carrying rail housing

CE

Application

The signal isolator **SINEAX TI 816** (Fig. 1) serves to electrically insulate **an** analog DC signal in the range 0...20 mA which depending on version is then converted to a current or voltage signal (0...20 mA or 0...10 V). It operates passively and does not require a separate power supply, but derives the little auxiliary energy it needs from the DC signal.

Its narrow casing is designed for mounting on different types of standard rails. A number of signal isolators can be mounted immediately next to each other and where there are many DC signals to be isolated can form a compact isolator block.

Fig. 1

Features / Benefits

- Electrically insulated analog DC signals 0...20 mA / Prevents the transfer of interference voltages and currents. Solves grounding problems in meshed signal networks
- Highly accurate / Performs its isolating function with negligible transmission error
- No power supply needed / Saves wiring costs and is easy to install in existing plants
- The device fulfils the protection requirements of the EMC guidelines (89/336/EWG) / The device bears the CE symbol for EMC. See "Table 2: Electromagnetic compatibility"
- Small and compact / Makes best use of the available space

Layout and mode of operation

The DC signal isolator comprises a DC chopper Z, an isolating stage T, a rectifier G and an oscillator O.

The chopper converts the DC input signal E to an AC signal which is transformed with electrical insulation, rectified, smoothed and appears at the output as a DC current signal A (Fig. 2, left). Versions with a DC output voltage signal A have a resistive burden through which the current flows (Fig. 2, right).

The chopper is controlled by the oscillator which obtains its power from the DC signal.

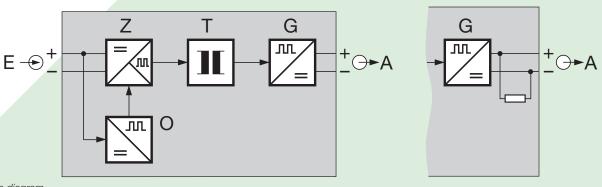


Fig. 2. Schematic diagram.

Technical data

Input signal E -

DC current: 0...20 mA

Max. permissible: 50 mA

Voltage limiter: $18 V \pm 5\%$ (with zener diode)

Voltage drop: $< 2.1 \text{ V (for 500 }\Omega\text{ burden)}$

 $< 20 \mu A$ (typical 5 μA) Overshoot:

Output signal A 🕞

DC current or

DC voltage: 0...20 mA or 0...10 V

Limit: Approx. 30 mA¹

Approx. 15 V²

 $600~\Omega^1$ Max. burden:

 $500 \Omega^2$ Internal resistance:

Residual ripple: < 20 mV ss

Time constant: Approx. 5 ms

Accuracy data

Error limits: $< \pm 0.1\%$ 1

> (reference value 20 mA, linearity error included)

 $< \pm 0.2\%$ ²

(reference value 10 V, linearity error included)

Reference conditions:

23 °C ± 1 K Ambient temperature

 $100 \Omega^{1}$ Output burden

 $\geq 5 M\Omega^2$

Additional error:

Burden influence < 0.2% (at 500 Ω) ¹

Temperature coefficient < 50 ppm/K

Installation data

Mechanical design: Carrying rail housing N12

> Dimensions see section "Dimensional drawings"

Lexan 940 (polycarbonate) Material of housing:

> Flammability Class V-0 acc. to UL 94, self-extinguishing, non-dripping,

free of halogen

² With voltage signal

acc. to EN 50 035-G32

Snapping

onto top-hat rail

onto G-type rail

acc. to EN 50 022-35 \times 7.5

Mounting position:

Electrical connections: Screw terminals with wire protec-

- for 0.2 to 4 mm² non-stranded

wires

- for 0.2 to 2.5 mm² strandes

wires

Weight: Approx. 35 g

Regulations

Mounting:

Electrical design: Acc. to IEC 1010

Housing IP 40 acc. to EN 60 529, Protection:

Terminals IP 20

Test voltage: 500 Veff, 50 Hz, 1 min.

Max. surge voltage: 800 V

Ambient conditions

Climatic rating: Climate class 3Z acc. to

VDI/VDE 3540

-20 to +65 °C Operating temperature:

- 40 to + 85 °C Storage temperature:

Annual mean

relative humidity: ≤ 75% standard climatic rating

Seismic test: 5 g, < 200 Hz,

2 h in each of 3 directions

Shock test:

10 shocks in each of 3 directions

Altitude: Max. 2000 m

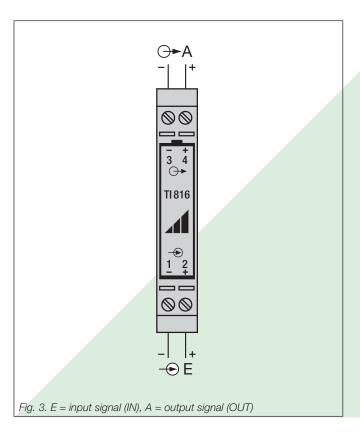
Indoor use only!

1 With current signal

Table 1: Versions (stock)

There are two versions of the DC signal isolator SINEAX TI 816 both of which are available ex stock. Quoting the **order No.** is sufficient when ordering:

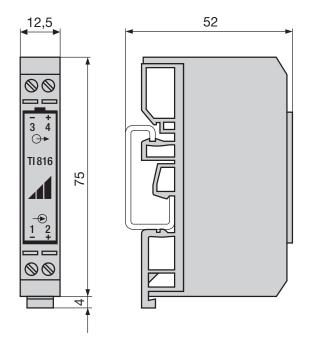
Description	Output signal A	Order Code	Order No.
Passive DC signal isolator input signal E: 020 mA, with 1 isolation and transmission channel, in carrying rail housing N12	020 mA	816 - 5110	990 722
	010 V	816 - 5111	994 089


Table 2: Electromagnetic compatibility

Reference was made to the general standards EN 50 081-2 and EN 50 082-2

Conducted interference from the instrument	EN 55 011	Group 1, Class A	
HF radiation from complete instrument	EN 55 011	Group 1, Class A	
Electrostatic discharge	IEC 1000-4-2	Direct: ± 8 kV air Indirect: ± 6 kV contact	
HF field influence on instrument	IEC 1000-4-3	80 MHz1000 MHz: 10 V/m, 80% AM 1 kHz (ITU-frequencies, 3 V/m)	
Transient burst via connections	IEC 1000-4-4	± 2 kV, 5/50 ns, 5 kHz, > 2 min. capacitively coupled	
HF interference via connections	IEC 1000-4-6	0.15 to 80 MHz: 10 V, 80% AM 1 kHz (ITU-frequencies, 3 V)	

The device fulfils the protection requirements of the EMC guidelines (89/336/EWG). The device bears the CE symbol for EMC.


Electrical connections

Standard accessories

1 Operating Instruction each in German, French and English

Dimensional drawings

12,5 49,5 1816 1 2 1 2 1 2 0 0

Fig. 4. SINEAX TI 816 in carrying rail housing N12 on G-type rail EN 50 035 – G 32.

Fig. 5. SINEAX TI 816 in carrying rail housing **N12** on top-hat rail EN 50 022 - 35 \times 7.5.