Falcon NEMA 4X 4 Wire Low-Voltage Powered Indicating Transmitters

Electrical Specifications

Ranges and Resolution

<table>
<thead>
<tr>
<th>Range</th>
<th>Units</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 15 BAR</td>
<td>BAR</td>
<td>±0.25% FS</td>
</tr>
<tr>
<td>0 to 15 PSI</td>
<td>PSI</td>
<td>±0.25% FS</td>
</tr>
<tr>
<td>0 to 1500 mBar</td>
<td>mBar</td>
<td>±0.25% FS</td>
</tr>
<tr>
<td>0 to 1500 mmHg</td>
<td>mmHg</td>
<td>±0.25% FS</td>
</tr>
<tr>
<td>0 to 1500 mHg</td>
<td>mHg</td>
<td>±0.25% FS</td>
</tr>
<tr>
<td>0 to 1500 inH2O</td>
<td>inH2O</td>
<td>±0.25% FS</td>
</tr>
<tr>
<td>0 to 1500 psig</td>
<td>psig</td>
<td>±0.25% FS</td>
</tr>
</tbody>
</table>

Accuracy (linearity, hysteresis, repeatability)

Standard: ±0.25% of full scale ±1 least significant digit
Optional: -HA ±0.1% FS ±1LSD (most ranges)
-4A ±0.4% FS ±1LSD
CD Factory calibration data
NC NIST traceable test report and calibration data

Display (update rate, type, size)

3 readings per second nominal display update rate
DR in ranges up to 1999: 3½ digit LCD, ½ digit height
DRBL ranges up to 1999: 3½ digit LCD, ½ digit height, red LED backlight

Controls

Non-interactive zero and span: ±10% range
Test calibration level: 0-100% range
Retransmission zero and span: 0 internal potentiometers

Retransmission Output

True analog output, 50 milliseconds typical response time.
-4 model: Current output, 4-20 mA DC, output drive (compliance) determined by power source. See graph.
-V model: Voltage output, 0-2 VDC into 5 kΩ or greater

Test Function

Front panel TEST button, when depressed sets display and retransmission output to “test calibration” level, independent of pressure input to allow testing of system operation.
Test level is set by top-accessible multiturn potentiometer to any value from 0 to 100% of full scale.

Power

Any AC source of 8 to 24 VAC 50/60 Hz or any DC source of 9 to 32 VDC
30 mA maximum, 40 mA for DRBL model with backlighting
3 ft long, 4-conductor 22 AWG shielded cable
Order optional WMPSK 12 VDC wall mount power supply kit to operate on 115 VAC

Environmental Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>–40 to 203°F (–40 to 95°C)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>–4 to 185°F (~–20 to 85°C)</td>
</tr>
<tr>
<td>Compensated Temperature</td>
<td>32 to 158°F (0 to 70°C)</td>
</tr>
</tbody>
</table>

Mechanical Specifications

Size

3.5" W x 3.0" H x 2.0" D housing
Add approximately 0.75" to height for pressure fitting
Add approximately 1" to depth for strain relief and wire clearance

Weight (approximate)

Gauge: 9 ounces
Shipping weight: 1 pound

Housing

NEMA 4X
UV stabilized polycarbonate/ABS case, light gray color
Clear polycarbonate window to protect display
Gasketed rear cover, six captive stainless steel screws

Pressure/Vacuum Connection & Material

¾" NPT male, 316 stainless steel

Media Compatibility

All wetted parts are 316 SS
Compatible with most liquids and gases

Overpressure

3000 psig range and metric equivalents: 5000 psig
5000 psig range and metric equivalents: 7500 psig
All others 2x rated pressure minimum

Burst Pressure

4x rated pressure minimum or 10,000 psi, whichever is less
Installation and Precautions

Install or remove the gauge using wrench on hex fitting only. Do not attempt to tighten by turning housing or any other part of the gauge. Use fittings appropriate for the pressure range of the gauge. Do not apply vacuum to gauges not designed for vacuum operation. Due to the hardness of 316 stainless steel, it is recommended that a thread sealant be used to ensure leak-free operation. NEVER insert objects into the gauge port or blow out with compressed air. Permanent damage not covered by warranty will result to the sensor.

Electrical Connection

NEVER connect the gauge wires directly to 115 VAC or permanent damage not covered by warranty will result.

The F4DR and F4DRBL can be powered by any 9 to 32 VDC or 8 to 24 VAC 50/60 Hz power source. An inexpensive unregulated low voltage source can be used. The magnitude of the supply voltage has negligible effect on the gauge calibration as long as it is within the stated voltage ranges. Do not allow the gauge supply voltage fall below 9 VDC or 8 VAC RMS. Operation below these values may cause erratic or erroneous readings or output. Models with 4-20 mA output power the current loop. Use a power source with sufficient voltage to operate the current loop.

Connection is made with the 4-conductor cable at the gauge rear. This cable accommodates both the gauge power supply and retransmission output. This cable has one RED and one BLACK lead. If using a 9 to 32 VDC power source, connect the (+) supply to the RED lead and the (−) supply to the BLACK lead. If using a 8 to 24 VAC 50/60 Hz power source, connect to the RED and BLACK leads. When using low voltage AC power, there is of course, no polarity consideration.

The (+) retransmission output appears on the WHITE lead, and the (−) retransmission output appears on the GREEN lead. Use of the shield (drain) wire of the retransmission output is optional. It is not generally needed for 4-20 mA current loops unless very long cable lengths are used in electrically noisy environments.

The output is a continuous analog signal based on the transducer output rather than the display. This output is filtered to improve noise immunity and has a response time of about 50 milliseconds.

The power supply (−) lead is tied to the retransmission output ground. Therefore, if a DC supply is used, the power supply (−) lead should be considered common with regard to the retransmission output (−) connection.

Using the Retransmission Output

NEVER connect retransmission output wires together or to an external power source or permanent damage not covered by warranty will result.

For 4-20 mA output models, be sure to observe the output compliance (voltage drive) capabilities of the gauge. The compliance, and therefore the maximum loop resistance the output can drive, is a function of the supply voltage to the gauge. Consult the graph below for maximum loop resistance vs. gauge supply voltage. Too large a loop resistance will cause the gauge output to “limit” or saturate before reaching its full 20 mA output.

When using the 0-2 volt retransmission output, do not allow the resistive load on the output to fall below 5K ohms. Also, avoid large capacitive loads (greater than 1000 pF) such as those caused by long runs of shielded cable. For long retransmission runs, use the 4-20 mA output model instead.

Operation

The gauge is powered on whenever a supply voltage is applied. Warm-up time is negligible. In normal operation, the system pressure is displayed on the gauge LCD and an output signal will be present. F4DRBL model display backlighting will be on whenever power is applied. The display backlighting will not be apparent under bright lighting conditions.

Calibration

See gauge label for location of controls to adjust the zero and span of the display. GAUGE reference units may be re-zeroed without affecting the span calibration. The gauge port must be open to the ambient with no pressure/vacuum applied. Adjust the Zero control until the gauge reads zero with the minus (−) sign occasionally flashing.

Span calibration should only be attempted if the user has access to a pressure reference of known accuracy. The quality of the calibration is only as good as the accuracy of the calibration equipment and ideally should be at least four times the gauge accuracy. Zero calibration must be done before span calibration. Record readings at three to five points over the range of gauge and adjust span control to minimize error and meet specifications.

ABSOLUTE reference gauges require vacuum generation and atmospheric pressure measurement equipment for accurate calibration and thus are more difficult to calibrate in the field. Gauges may be returned to Cecomp Electronics for factory certified recalibration. NIST traceability is available.

Internal potentiometers adjust the agreement between the displayed value and the analog output. These are set at the factory and should not normally be adjusted. If adjustment is required, consult factory. Accurate pressure generation and measurement and current measurement equipment are required to successfully complete this calibration.

Voltage Compliance for 4-20 mA Current Retransmission Output

<table>
<thead>
<tr>
<th>Max Loop Resistance (Ohms)</th>
<th>Voltage Compliance (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1400</td>
</tr>
<tr>
<td>200</td>
<td>1200</td>
</tr>
<tr>
<td>400</td>
<td>1000</td>
</tr>
<tr>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>800</td>
<td>600</td>
</tr>
</tbody>
</table>

Test Button

When the front-panel TEST button is held depressed, the display and retransmission output are switched, independent of the system pressure, to a test level determined by the setting of the Test potentiometer. This test mode will allow setup and testing of the output and any external device(s) connected to it by switching to this test level whenever desired without having to alter the system pressure.

To set the test output level, see gauge label for location of Test potentiometer. Press and hold the front-panel TEST button and adjust the Test potentiometer to set the display and retransmission output to the desired test level.

Part Numbers

<table>
<thead>
<tr>
<th>F4DR or F4DRBL range units ref - output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure/Vacuum Range (see table)</td>
</tr>
<tr>
<td>Units (see table)</td>
</tr>
<tr>
<td>G= Gauge, A= Absolute, VAC=Vacuum</td>
</tr>
</tbody>
</table>

Example: F4DR100P$IG-1 = F4DR, 100.0 psig, Current (4-20 mA) output

<table>
<thead>
<tr>
<th>Unit Abbreviations</th>
<th>psi = PSI</th>
<th>inHg = INHG</th>
<th>ftH2O = FTTH2O</th>
<th>kg/cm² = KGCm</th>
<th>mbar = MBAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oz/in² = ZIN</td>
<td>mmHg = MMHG</td>
<td>torr = TQR</td>
<td>g/cm² = GCM</td>
<td>bar = BAR</td>
</tr>
<tr>
<td></td>
<td>inH2O = INH2O</td>
<td>mmH2O = MMH2O</td>
<td>kPa = KPA</td>
<td>cmH2O = CMH2O</td>
<td>atm = ATM</td>
</tr>
<tr>
<td></td>
<td>MPA = MPA</td>
<td>atm = ATM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cecomp maintains a constant effort to upgrade and improve its products. Specifications are subject to change without notice. Consult factory for your specific requirements.