SECTION 5: INSTRUMENTS

- RTD and thermocouple Temptran™ transmitters provide accurate signals over thousands of feet.
 - Fixed range or field rangeable
 - Miniature, hockey puck, and isolated versions
 - High-accuracy calibration available matched to individual RTDs
- Controllers, indicators and alarms for precise monitoring and control

RTD transmitters ...5-2 to 5-5, 5-8 to 5-9, 5-12 to 5-13
Thermocouple transmitters..........5-6 to 5-7, 5-10 to 5-11, 5-14 to 5-15
Isolated transmitters..5-8 to 5-11
Field rangeable transmitters.........................5-12 to 5-15
Temperature range table5-16 to 5-17
High accuracy calibration...............................5-18

Mounting accessories ..5-18
Design notes ...5-19
CT325 miniature DC temperature controller5-20 to 5-21
Loop-powered indicators5-22 to 5-23
CT224 12-channel monitor5-24 to 5-25
CT15 controller/alarm ...5-26 to 5-27
CT16A temperature controller5-28 to 5-30
CT15/CT16A accessories5-30
Miniature Temptran™ RTD Transmitters

Overview

- Two models:
 - TT111: UL-recognized component for Canada and United States.
 - TT211: Wider ambient rating; Factory Mutual (FM) approved intrinsically safe and nonincendive.
- Optional high-accuracy calibration to Minco RTDs for improved accuracy; see next page and page 5-18 for more information.

Specifications

Output: 4 to 20 mA over specified range, linear with temperature.

Calibration accuracy: ±0.1% of span.

Linearity: Referenced to actual sensor temperature.

Platinum RTD input: ±0.1% of span.

Nickel and nickel-iron RTD input:
 - ±0.25% of span for spans less than 100°C.
 - ±0.25% of span per 100°C of span for spans greater than 100°C.

Adjustments: Zero and span, ±5% of span. Factory set.

Ambient temperature:

 - TT111: 0 to 50°C (32 to 122°F).
 - TT211: -25 to 85°C (-13 to 185°F).
 - Storage: -55 to 100°C (-67 to 212°F).

Ambient temperature effects:

 - ±0.013% of span per °C.
 - ±0.025% of span per °C for spans less than 55°C.

Warmup drift: ±0.1% of span max., with $V_{\text{sup}} = 24$ VDC and $R_{\text{m}} = 250$ Ω.

Stable within 30 minutes.

Supply voltage: 8.5 to 35 VDC. Voltage effect ±0.001% of span per volt. Reverse polarity protected.

Maximum load resistance: The maximum allowable resistance of the signal carrying loop is:

$$R_{\text{loop max}} = \frac{V_{\text{supply}} - 8.5}{0.020 \text{ amps}}$$

Example: With supply voltage 24 VDC, maximum loop resistance is 775 Ω.

Minimum span: 27.8°C (50°F).

Hazardous atmospheres: All models may be used with Minco flameproof/explosionproof connection heads. Models TT211 is Factory Mutual approved nonincendive for use in Class I, Division 2 areas and intrinsically safe for Class I, Division 1 areas (requires approved barrier). Transmitter entity parameters:

- $V_{\text{max}} = 35$ volts;
- $I_{\text{max}} = 150$ mA;
- $C_i = 0 \mu F$ and $L_i = 0$ mH.

Connections:

Terminal block for wires AWG 22 to AWG 14.

Physical: Polycarbonate case, epoxy potted for moisture resistance.

Weight: 1.1 oz. (30 g).

Hazardous area requirements

Refer to Minco’s Application Aid #19 entitled “Specifying Temperature Sensors for Hazardous Areas” for more information on how to classify a hazardous area, methods of protection, and the various standards and agencies (including FM, CSA, CENELEC and ATEX). Application Aid #19 is available at www.minco.com/sensoraid/.
Miniature RTD Transmitters

RTD input types
2-wire resistance thermometer:

<table>
<thead>
<tr>
<th>Element</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum (0.00392 TCR) 100 Ω at 0°C</td>
<td>PA</td>
</tr>
<tr>
<td>Platinum (0.00391 TCR) 100 Ω at 0°C</td>
<td>PB</td>
</tr>
<tr>
<td>Platinum (0.00385 TCR) 100 Ω at 0°C</td>
<td>PD, PE</td>
</tr>
<tr>
<td>Platinum (0.00375 TCR) 1000 Ω at 0°C</td>
<td>PF</td>
</tr>
<tr>
<td>Nickel-iron (0.00518 TCR) 604 Ω at 0°C</td>
<td>FA</td>
</tr>
<tr>
<td>Nickel-iron (0.00527 TCR) 1000 Ω at 70°F</td>
<td>FB</td>
</tr>
<tr>
<td>Nickel-iron (0.00527 TCR) 2000 Ω at 70°F</td>
<td>FC</td>
</tr>
<tr>
<td>Nickel (0.00672 TCR) 120 Ω at 0°C</td>
<td>NA</td>
</tr>
</tbody>
</table>

Dimensions in inches (mm)

Wiring Diagram

Special high-accuracy calibration
To order a Temptran with special calibration, replace the standard model (eg. TT110) with the special calibration model (eg. TT150). See page 5-18 for more information.

<table>
<thead>
<tr>
<th>Standard model</th>
<th>Special calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT111</td>
<td>TT151</td>
</tr>
<tr>
<td>TT211</td>
<td>TT211</td>
</tr>
</tbody>
</table>

Note: Specifications for special calibration units are identical to their standard counterparts.

Specification and order options:

<table>
<thead>
<tr>
<th>TT111</th>
<th>Model number: TT111 or TT211</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>RTD element code from table</td>
</tr>
<tr>
<td>1</td>
<td>Output: 4 to 20 mA DC</td>
</tr>
<tr>
<td>C</td>
<td>Temperature range code from pages 5-16 [Ex: C = 0 to 100°C (32 to 212°F)]</td>
</tr>
</tbody>
</table>

TT111PD1C = Sample part number

Specifications subject to change
TT176, TT246 RTD Transmitters

Overview
Specify these rugged, accurate transmitters for process control and other industrial applications.

Model TT176 provides a linearized 4 to 20 mA current signal for long-distance transmission. It has a built-in LED indicator to monitor operation.

TT246 outputs 1 to 5 VDC proportional to temperature. It draws only 3 mA of quiescent current, making it ideal for solar or battery powered systems.

- TT176: 4 to 20 mA current signal
- TT246: 1 to 5 VDC voltage signal
- 2 or 3-wire RTD input
- TT176: Factory Mutual (FM) approved intrinsically safe, nonincendive for hazardous locations
- Ambient rated to 85°C (185°F)
- Fits DIN “B” style connection heads
- Optional high-accuracy calibration to Minco RTDs for improved accuracy; see next page and page 5-18 for more information.

Specifications
Output: Linear with temperature over specified range.
TT176: 4 to 20 mA
TT246: 1 to 5 VDC

Calibration Accuracy: ±0.1% of span (0.2% of span for spans less than 10 Ω)

Linearity: 0.1% of span, referenced to actual sensor temperature

Adjustments Zero and span, ±5% of span, non-interacting. Factory set.

Ambient temperature:
Operating: -40 to 85°C (-40 to 185°F)
Storage: -55 to 100°C (-67 to 212°F)

Ambient temperature effects:
±0.009% of span per °C
±0.014% of span per °C for spans less than 10 Ω

Warmup drift:
±0.1% of span max., with \(V_{\text{supply}} = 24 \text{ VDC} \) and \(R_{\text{loop}} = 250 \Omega \). Stable within 15 minutes.

Supply voltage:
TT176: 10 to 35 VDC
TT246: 7.5 to 35 VDC

Voltage effect ±0.001% of span per volt.
Reverse polarity protected.

Supply current (TT246): 3 mA max. with no load.

Maximum load resistance: The maximum allowable resistance of the signal carrying loop is:

\[
R_{\text{loop max}} = \frac{V_{\text{supply}} - 10}{0.020 \text{ amps}}
\]

Example: With supply voltage 24 VDC, maximum loop resistance is 700 Ω.

Minimum span: 10°C (18°F).

Minimum output current: 2.2 mA.

Maximum output current: 28 mA.

Leadwire compensation: (3-wire RTD) ±0.05% of span per Ω up to 25 Ω in each leg.

Hazardous atmospheres: Both models may be used with Minco explosionproof connection heads. Model TT176 is also Factory Mutual (FM) approved nonincendive for use in Class I, Division 2 areas and intrinsically safe for Class I, Division 1 areas (requires approved barrier). Transmitter entity parameters:

\[
V_{\text{max}} = 35 \text{ volts}; I_{\text{max}} = 150 \text{ mA}; C = 0 \mu F \text{ and } L = 0 \text{ mH}.
\]

Connections: Terminal block for wires AWG 22 to AWG 14.

Physical: Polycarbonate case, epoxy potted for moisture resistance.

Weight: 2.0 oz. (57 g).

Specifications subject to change
RTD input types

2 or 3-wire resistance thermometer:

<table>
<thead>
<tr>
<th>Element Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>PA</td>
</tr>
<tr>
<td>Platinum</td>
<td>PB</td>
</tr>
<tr>
<td>Platinum</td>
<td>PD</td>
</tr>
<tr>
<td>Platinum</td>
<td>PE</td>
</tr>
<tr>
<td>Platinum</td>
<td>PF</td>
</tr>
<tr>
<td>Platinum</td>
<td>PW</td>
</tr>
<tr>
<td>Copper</td>
<td>CA</td>
</tr>
<tr>
<td>Nickel-iron</td>
<td>FA</td>
</tr>
<tr>
<td>Nickel-iron</td>
<td>FB</td>
</tr>
<tr>
<td>Nickel-iron</td>
<td>FC</td>
</tr>
<tr>
<td>Nickel</td>
<td>NA</td>
</tr>
</tbody>
</table>

Dimensions in inches (mm)

<table>
<thead>
<tr>
<th>Element</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>PA</td>
</tr>
<tr>
<td>Platinum</td>
<td>PB</td>
</tr>
<tr>
<td>Platinum</td>
<td>PD</td>
</tr>
<tr>
<td>Platinum</td>
<td>PE</td>
</tr>
<tr>
<td>Platinum</td>
<td>PF</td>
</tr>
<tr>
<td>Platinum</td>
<td>PW</td>
</tr>
<tr>
<td>Copper</td>
<td>CA</td>
</tr>
<tr>
<td>Nickel-iron</td>
<td>FA</td>
</tr>
<tr>
<td>Nickel-iron</td>
<td>FB</td>
</tr>
<tr>
<td>Nickel-iron</td>
<td>FC</td>
</tr>
<tr>
<td>Nickel</td>
<td>NA</td>
</tr>
</tbody>
</table>

Special high-accuracy calibration

To order a Temptran with special calibration, replace the standard model (eg. TT176) with the special calibration model (eg. TT676).

<table>
<thead>
<tr>
<th>Standard model</th>
<th>Special calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT176</td>
<td>TT676</td>
</tr>
<tr>
<td>TT246</td>
<td>TT746</td>
</tr>
</tbody>
</table>

Note: Specifications for special calibration units are identical to their standard counterparts.

Specification and order options:

<table>
<thead>
<tr>
<th>TT176</th>
<th>Model Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TT176: 4 to 20 mA</td>
</tr>
<tr>
<td></td>
<td>TT246: 1 to 5 VDC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PB</th>
<th>RTD element code from table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>Temperature range code from pages 5-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>[Ex: K = 0 to 200°C (32 to 392°F)]</td>
</tr>
</tbody>
</table>

TT176PB1K = Sample part number

Hazardous area requirements

Refer to Minco’s Application Aid #19 entitled “Specifying Temperature Sensors for Hazardous Areas” for more information on how to classify a hazardous area, methods of protection, and the various standards and agencies (including FM, CSA, CENELEC and ATEX). Application Aid #19 is available at www.minco.com/sensoraid/.

Specifications subject to change
TT190, TT205 Thermocouple Transmitters

Overview
Model TT190 interfaces with thermocouples for use in process control and other industrial applications. It has a built-in LED indicator to help troubleshoot signal loops. A dark LED signals loss of current loop power or an open thermocouple.

Model TT205 offers superior performance in an economical and small package.

- TT190: “Hockey puck” style industrial transmitter
- TT205: Miniature economy version
- 4 to 20 mA current signal
- Thermocouple input
- Factory Mutual (FM) approved intrinsically safe, nonincendive for hazardous locations
- Fits DIN “B” style connection heads

Specifications
Output: 4 to 20 mA over specified range.
Accuracy: ±0.2% of span.
Linearity: Voltage linear.
Adjustments: Zero and span, ±5% of span, non-interacting.
Factory set.
Warmup drift: ±0.2% of span max., with
V_supply = 24 VDC and R_loop = 250 Ω.
Stable within 15 minutes.
Supply voltage:
TT190: 10 to 35 VDC
TT205: 8.5 to 35 VDC
Voltage effect ±0.001% of span per volt.
Reverse polarity protected.

Maximum load resistance: The maximum allowable resistance of the signal carrying loop is:

\[R_{\text{loop max}} = \frac{V_{\text{supply}} - 10}{0.020 \text{ amps}} \]

Example: With supply voltage 24 VDC, maximum loop resistance is 700 Ω.

Minimum output current: 1.5 mA.
Maximum output current: 28 mA.
Burnout: Downscale burnout standard; upscale optional.

Hazardous atmospheres: Both models may be used with Minco explosionproof connection heads. Model TT190 is Factory Mutual (FM) approved nonincendive for use in Class I, Division 2 areas and intrinsically safe for Class I, Division 1 areas (requires approved barrier). Transmitter entity parameters:
\[V_{\text{max}} = 35 \text{ volts}; \quad I_{\text{max}} = 150 \text{ mA}; \quad C_i = 0 \mu\text{F} \text{ and } L_i = 0 \text{ mH}. \]

Connections: Terminal block for wires AWG 22 to AWG 14.
Physical: Polycarbonate case, epoxy potted for moisture resistance.
Weight:

- TT190: 2.0 oz. (57 g).
- TT205: 1.8 oz. (52 g).

Hazardous area requirements
Refer to Minco’s Application Aid #19 entitled “Specifying Temperature Sensors for Hazardous Areas” for more information on how to classify a hazardous area, methods of protection, and the various standards and agencies (including FM, CSA, CENELEC and ATEX). Application Aid #19 is available at www.minco.com/sensoraid/.

Specifications subject to change
TT190

Ambient temperature:
Operating: -40 to 85°C (-40 to 185°F).
Storage: -55 to 100°C (-67 to 212°F).

Ambient temperature effects: ±0.018% of span per °C.

Cold junction compensation drift:
±0.03°C per °C, -25 to 70°C.
±0.06°C per °C, -40 to -25°C and 70 to 85°C.
Minimum span: 100°C (180°F).

TT205

Ambient temperature:
Operating: -10 to 60°C (14 to 140°F).
Storage: -55 to 100°C (-67 to 212°F).

Ambient temperature effects: ±0.036% of span per °C.

Cold junction compensation drift: ±0.05°C per °C.
Minimum span: 150°C (270°F).

Specification and order options

<table>
<thead>
<tr>
<th>TT190</th>
<th>Model Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TT190: Round</td>
</tr>
<tr>
<td></td>
<td>TT205: Rectangular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>TC Junction type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E = Chromel-Constantan</td>
</tr>
<tr>
<td></td>
<td>J = Iron-Constantan</td>
</tr>
<tr>
<td></td>
<td>K = Chromel-Alumel</td>
</tr>
<tr>
<td></td>
<td>T = Copper-Constantan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th>U = Ungrounded junction (required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Output: 4 to 20 mA DC</td>
</tr>
<tr>
<td>AN</td>
<td>Temperature range code from 5-16</td>
</tr>
<tr>
<td></td>
<td>[Ex: AN = -17.8 to 148.9°C (0 to 300°F)]</td>
</tr>
</tbody>
</table>

TT190 Dimensions in inches (mm)

Wiring Diagram

TT205

Ambient temperature:
Operating: -10 to 60°C (14 to 140°F).
Storage: -55 to 100°C (-67 to 212°F).

Ambient temperature effects: ±0.018% of span per °C.

Cold junction compensation drift:
±0.03°C per °C, -25 to 70°C.
±0.06°C per °C, -40 to -25°C and 70 to 85°C.
Minimum span: 100°C (180°F).

TT205 Dimensions in inches (mm)

Wiring Diagram

Specifications subject to change
TT220 Isolated RTD Transmitter

Overview
Model TT220 is a rugged industrial transmitter designed for process control and other applications. It provides electrical isolation to 600 VRMS between the input and output.

The TT220 has a built-in LED indicator to help troubleshoot signal loops. A very bright LED indicates an open sensor; a dark LED signals a shorted sensor or loss of current loop power.

- 4 to 20 mA current signal
- 2 or 3-wire RTD input
- Input/output isolated to 600 VRMS
- Factory Mutual (FM) approved intrinsically safe, nonincendive for hazardous locations
- Ambient rated to 85°C (185°F)
- Optional high-accuracy calibration to Minco RTDs for improved accuracy; see next page and page 5-18 for more information

Specifications
Output: 4 to 20 mA over specified range, linear with temperature.

Calibration accuracy: ±0.1% of span (0.2% of span for spans less than 10 Ω).

Linearity: ±0.1% of span, referenced to actual sensor temperature.

Adjustments: Zero and span, ±5% of span, non-interacting. Factory set.

Ambient temperature:
Operating: -40 to 85°C (-40 to 185°F).
Storage: -55 to 100°C (-67 to 212°F).

Ambient temperature effects: ±0.018% of span per °C.

Warmup drift: ±0.1% of span max., with
\[V_{\text{sup}} = 24 \text{ VDC and } R_{\text{sup}} = 250 \Omega. \]
Stable within 15 minutes.

Input/output isolation: 600 VRMS.

Supply voltage: 13 to 45 VDC. Voltage effect ±0.001% of span per volt. Reverse polarity protected.

Maximum load resistance: The maximum allowable resistance of the signal carrying loop is:
\[R_{\text{loop max}} = \frac{V_{\text{sup}} - 13}{0.020 \text{ amps}} \]
Example: With supply voltage 24 VDC, maximum loop resistance is 550 Ω.

Minimum span: 10°C (18°F).

Minimum output current: 2.5 mA.

Maximum output current: 28 mA.

Leadwire compensation: (3-wire RTD) ±0.05% of span per Ω up to 25 Ω in each leg.

Hazardous atmospheres:
Model TT220 may be used with Minco explosionproof connection heads. This model is Factory Mutual (FM) approved nonincendive for use in Class I, Division 2 areas and intrinsically safe for Class I, Division 1 areas (requires approved barrier). Transmitter entity parameters:
\[V_{\text{max}} = 35 \text{ volts}; \quad I_{\text{max}} = 150 \text{ mA}; \quad C_i = 0 \mu \text{F and } L_i = 0 \text{ mH}. \]

Connections: Terminal block for wires AWG 22 to AWG 14.

Physical: Polycarbonate case, epoxy potted for moisture resistance.

Weight: 3.0 oz. (85 g).

Hazardous area requirements
Refer to Minco’s Application Aid #19 entitled “Specifying Temperature Sensors for Hazardous Areas” for more information on how to classify a hazardous area, methods of protection, and the various standards and agencies (including FM, CSA, CENELEC and ATEX). Application Aid #19 is available at www.minco.com/sensoraid/.

Specifications subject to change.
RTD input types

2 or 3-wire resistance thermometer:

<table>
<thead>
<tr>
<th>Element</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum (0.00392 TCR) 100 Ω at 0°C</td>
<td>PA</td>
</tr>
<tr>
<td>Platinum (0.00391 TCR) 100 Ω at 0°C</td>
<td>PB</td>
</tr>
<tr>
<td>Platinum (0.00385 TCR) 100 Ω at 0°C</td>
<td>PD, PE</td>
</tr>
<tr>
<td>Platinum (0.00385 TCR) 1000 Ω at 0°C</td>
<td>PF</td>
</tr>
<tr>
<td>Platinum (0.00375 TCR) 1000 Ω at 0°C</td>
<td>PW</td>
</tr>
<tr>
<td>Copper (0.00427 TCR) 10 Ω at 25°C</td>
<td>CA</td>
</tr>
<tr>
<td>Nickel-iron (0.00518 TCR) 604 Ω at 0°C</td>
<td>FA</td>
</tr>
<tr>
<td>Nickel-iron (0.00527 TCR) 1000 Ω at 70°F</td>
<td>FB</td>
</tr>
<tr>
<td>Nickel-iron (0.00527 TCR) 2000 Ω at 70°F</td>
<td>FC</td>
</tr>
<tr>
<td>Nickel (0.00672 TCR) 120 Ω at 0°C</td>
<td>NA</td>
</tr>
</tbody>
</table>

Special high-accuracy calibration

To order a Temptran with special calibration, replace the standard model (eg. TT220) with the special calibration model (eg. TT720).

<table>
<thead>
<tr>
<th>Standard model</th>
<th>Special calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT220</td>
<td>TT720</td>
</tr>
</tbody>
</table>

Note: Specifications for special calibration units are identical to their standard counterparts

Specification and order options

<table>
<thead>
<tr>
<th>TT220</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>RTD element code from table</td>
</tr>
<tr>
<td>1</td>
<td>Output: 4 to 20 mA DC</td>
</tr>
<tr>
<td>GH</td>
<td>Temperature range code from page 5-16 [Ex: GH = -40 to 100°C (~-40 to 212°F)]</td>
</tr>
</tbody>
</table>

TT220PA1GH = Sample part number

Dimensions in inches (mm)

Wiring Diagram
Overview

Model TT221 is a rugged thermocouple transmitter designed for process control and other applications. It provides electrical isolation to 600 VRMS between the input and output. You can use thermocouples with either grounded or ungrounded junctions. The TT221 has a built-in LED indicator to help troubleshoot signal loops. A dark LED signals loss of loop power or an open thermocouple.

- 4 to 20 mA current signal
- Thermocouple input
- Input/output isolated to 600 VRMS
- Factory Mutual (FM) approved intrinsically safe, nonincendive for hazardous locations
- Ambient rated to 85°C (185°F)

Specifications

Output: 4 to 20 mA over specified range.
Accuracy: ±0.2% of span.
Linearity: Voltage linear.
Adjustments: Zero and span, ±5% of span, non-interacting. Factory set.
Ambient temperature: Operating: -40 to 85°C (-40 to 185°F). Storage: -55 to 100°C (-67 to 212°F).
Ambient temperature effects: ±0.036% of span per °C.

Cold junction compensation drift:
±0.03°C per °C, -25 to 70°C.
±0.06°C per °C, -40 to -25°C and 70 to 85°C.

Warmup drift: ±0.2% of span max., with

\[V_{\text{supply}} = 24 \text{ VDC and } R_{\text{loop}} = 250 \Omega \].
Stable within 15 minutes.

Input/output isolation: 600 VRMS
Supply voltage: 13 to 45 VDC. Voltage effect ±0.001% of span per volt. Reverse polarity protected.

Maximum load resistance: The maximum allowable resistance of the signal carrying loop is:

\[R_{\text{loop max}} = \frac{V_{\text{supply}} - 13}{0.020 \text{ amps}} \]

Example: With supply voltage 24 VDC, maximum loop resistance is 550 Ω.

Minimum span: 100°C (180°F).
Minimum output current: 2.5 mA.
Maximum output current: 28 mA.
Burnout: Downscale burnout standard; upscale optional.

Hazardous atmospheres:
Model TT221 may be used with Minco explosionproof connection heads. This model is Factory Mutual (FM) approved nonincendive for use in Class I, Division 2 areas and intrinsically safe for Class I, Division 1 areas (requires approved barrier).
Transmitter entity parameters:

\[V_{\text{max}} = 35 \text{ volts}; \quad I_{\text{max}} = 150 \text{ mA}; \quad C = 0 \mu \text{F} \text{ and } L = 0 \text{ mH}. \]

Connections: Terminal block for wires AWG 22 to AWG 14.
Physical: Polycarbonate case, epoxy potted for moisture resistance.
Weight: 3.0 oz. (85 g).

Specification and order options

<table>
<thead>
<tr>
<th>TT221</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>TC junction type:</td>
</tr>
<tr>
<td></td>
<td>E = Chromel-Constantan</td>
</tr>
<tr>
<td></td>
<td>J = Iron-Constantan</td>
</tr>
<tr>
<td></td>
<td>K = Chromel-Alumel</td>
</tr>
<tr>
<td></td>
<td>T = Copper-Constantan</td>
</tr>
</tbody>
</table>

| BW | Temperature range code from page 5-16 [Ex: BW = 0 to 250°C (32 to 482°F)] |

TT221J1BW = Sample part number

Specifications subject to change
Dimensions in inches (mm)

- Zero: 0.312 (7.9) I.D. [2]
- Span: 0.65 (16.5)
- Through: 1.30 (33.0)
- Diameter: 1.90 (48.3)

Wiring Diagram

THERMOCOUPLE TT221

Hazardous area requirements

Refer to Minco's Application Aid #19 entitled “Specifying Temperature Sensors for Hazardous Areas” for more information on how to classify a hazardous area, methods of protection, and the various standards and agencies (including FM, CSA, CENELEC and ATEX). Application Aid #19 is available at www.minco.com/sensoraid/.
TT273 Field Rangeable RTD
Temperature Transmitter

Overview
Model TT273 is a 2-wire temperature transmitter for 2 or 3-lead 100 Ω platinum RTDs. The transmitter converts the RTD temperature into a linearized 4 to 20 mA DC current signal. Because this current signal is immune to leadwire and electrical noise, the TT273 lets you obtain accurate temperature readings from RTDs thousands of feet away. An ordinary twisted pair of wires carries both the temperature signal and power for the transmitter’s electronics.

An LED conveniently indicates the status of the control loop. The brightness is directly proportional to the loop current. A very bright LED indicates an open RTD; a dark LED signals a shorted RTD or loss of current loop power.

• 4 to 20 mA current signal
• Fits standard 35 mm DIN rail
• Field-calibrate to your temperature range
• Optional high-accuracy calibration to Minco RTDs for improved accuracy; see next page and page 5-18 for more information
• Optional Input/Output isolation to 600 VRMS

Specifications
Output: 4 to 20 mA DC over specified range.
Calibration accuracy: ±0.2% of span.
Linearity: ±0.2% of span, reference to actual sensor temperature.

Adjustments:
Zero: -50 to 150°C (-58 to 302°F).
Span: 50 to 600°C (90 to 1080°F).

Ambient temperature:
Operating: -40 to 85°C (-40 to 185°F).
Storage: -55 to 100°C (-67 to 212°F).

Specifications subject to change.
RTD input types

2 or 3-wire 100 Ω platinum RTD.

<table>
<thead>
<tr>
<th>Element</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum (0.00392 TCR) 100 Ω at 0°C</td>
<td>PA</td>
</tr>
<tr>
<td>Platinum (0.00391 TCR) 100 Ω at 0°C</td>
<td>PB</td>
</tr>
<tr>
<td>Platinum (0.00385 TCR) 100 Ω at 0°C</td>
<td>PD, PE</td>
</tr>
</tbody>
</table>

Special high-accuracy calibration

To order a Temptran with special calibration, replace the standard model (eg. TT273) with the special calibration model (eg. TT773)

<table>
<thead>
<tr>
<th>Standard model</th>
<th>Special calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT273</td>
<td>TT773</td>
</tr>
</tbody>
</table>

Note: Specifications for special calibration units are identical to their standard counterparts.

Specification and order options

<table>
<thead>
<tr>
<th>TT273</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>RTD element code from table</td>
</tr>
<tr>
<td>I</td>
<td>Output: 4 to 20 mA DC</td>
</tr>
<tr>
<td>N</td>
<td>Input/Output: N = Non-isolated I = Isolated</td>
</tr>
<tr>
<td>(-25/50)</td>
<td>Factory preset temp. range: (4 mA/20 mA temperature) Range is user adjustable. Refer to the Zero and Span specifications.</td>
</tr>
<tr>
<td>C</td>
<td>Temperature scale: F = Fahrenheit C = Celsius</td>
</tr>
</tbody>
</table>

TT273PD1N(-25/50)C = Sample part number

Dimensions in inches (mm)

![Dimensions diagram]

Wiring diagram

![Wiring diagram]

Specifications subject to change
TT274 Field Rangeable Thermocouple Temperature Transmitter

Overview

Model TT274 is a 2-wire temperature transmitter for types J and K thermocouples. The transmitter converts the thermocouple’s millivolt signal to a 4 to 20 mA DC current signal. Because this current signal is immune to leadwire and electrical noise, the TT274 lets you obtain accurate temperature readings from thermocouples thousands of feet away. An ordinary twisted pair of wires carries both the temperature signal and power for the transmitter’s electronics.

With the isolation option, the mV input signal from the thermocouple is electrically isolated from the 4 to 20 mA output, allowing use of grounded thermocouples with multiple TT274s operating from the same power supply.

An LED conveniently indicates the status of the control loop. The brightness is directly proportional to the loop current. A dark LED signals an open sensor or loss of current loop power.

The output signal of the TT274 is voltage linear (not temperature linear) and is intended for use with instruments which compensate for the nonlinear signal output of the thermocouple sensor.

- 4 to 20 mA current signal
- Fits standard 35 mm DIN rail
- Field-calibrate to your thermocouple type and temperature range
- Optional Input/Output isolation to 600 VRMS

Specifications

Input: Type J or K thermocouple (field selectable).

Output: 4 to 20 mA DC over specified range.

Accuracy: ±0.2% of span.

Linearity: Voltage linear.

Adjustments:
- Zero: -50°C to 150°C (-58°F to 302°F).
- Span: Type J: 125 to 850°C (225 to 1530°F), Type K: 150 to 1200°C (270 to 2160°F).

Ambient temperature:
- Operating: -40 to 85°C (-40 to 185°F).
- Storage: -55 to 100°C (-67 to 212°F).

Ambient temperature effects: ±0.036% of span/°C (±0.02% of span/°F).

Cold junction compensation drift: ±0.03°C/°C for -25 to 70°C ambients. ±0.06°C/°C for -40 to -25°C and 70 to 85°C ambients.

Warmup drift: ±0.1% of span max., assuming $V_{\text{supply}} = 24$ VDC and $R_{\text{loop}} = 250$ Ω. Stable within 15 minutes.

Input/output isolation (optional): 600 VRMS, 1 minute.

Supply voltage:
- Non-Isolated: 10 to 45 volts DC with no load.
- Isolated: 13 to 45 volts DC with no load.

Reverse polarity protected.

Voltage effect: ±0.001% of span per volt.

Maximum load resistance: The maximum allowable resistance of the signal-carrying loop is given by this formula:

- Non-Isolated: $R_{\text{loop max}} = \frac{V_{\text{supply}} - 10}{0.020 \text{ amps}}$
- Isolated: $R_{\text{loop max}} = \frac{V_{\text{supply}} - 13}{0.020 \text{ amps}}$

Maximum output current: 28 mA.

Connections: Terminal block accepts wires from AWG 22 to AWG 14.

Physical: Polycarbonate, DIN rail enclosure.

Weight: 4.2 oz. (119 g).
Specification and order options

<table>
<thead>
<tr>
<th>Model number</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT274</td>
<td>TT274</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>T/C element code</td>
<td>T/C element code</td>
</tr>
<tr>
<td>J = Type J thermocouple</td>
<td>J = Type J thermocouple</td>
</tr>
<tr>
<td>K = Type K thermocouple</td>
<td>K = Type K thermocouple</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Output: 4 to 20 mA DC</td>
<td>Output: 4 to 20 mA DC</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Input/Output:</td>
<td>Input/Output:</td>
</tr>
<tr>
<td>N = Non-isolated</td>
<td>N = Non-isolated</td>
</tr>
<tr>
<td>I = Isolated</td>
<td>I = Isolated</td>
</tr>
<tr>
<td>(-25/200)</td>
<td>(-25/200)</td>
</tr>
<tr>
<td>Factory preset temp. range:</td>
<td>Factory preset temp. range:</td>
</tr>
<tr>
<td>(4 mA/20 mA temperature)</td>
<td>(4 mA/20 mA temperature)</td>
</tr>
<tr>
<td>Range is user adjustable.</td>
<td>Range is user adjustable.</td>
</tr>
<tr>
<td>Refer to the Zero and Span specifications.</td>
<td>Refer to the Zero and Span specifications.</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Temperature scale:</td>
<td>Temperature scale:</td>
</tr>
<tr>
<td>F = Fahrenheit</td>
<td>F = Fahrenheit</td>
</tr>
<tr>
<td>C = Celsius</td>
<td>C = Celsius</td>
</tr>
<tr>
<td>TT274K1N(-25/200)C = Sample part number</td>
<td>TT274K1N(-25/200)C = Sample part number</td>
</tr>
</tbody>
</table>

Specify and order products at:

www.minco.com/sensors_config

Dimensions in inches (mm)

![Dimensions Diagram]

Wiring diagram

![Wiring Diagram]

Specifications subject to change.
Specifications subject to change

Below is a list of commonly selected Temptran temperature ranges. The endpoints of the temperature range correspond to the Temptran's 4 and 20 mA signals. Choose the smallest possible span for best accuracy. Be sure to check the temperature limits of the sensor you specify.

If you do not find the temperature range required by your application, go to www.minco.com/rangecode/ for a complete list of temperature ranges. Custom ranges are also available for a small setup charge. Contact Access: Minco Sales and Support for more information.

For more temperature ranges (over 400 options) go to www.minco.com/rangecode/

* Element codes (PA, PB, PD, PE, etc.) are defined in the Resistance/Temperature Tables on page 1-13

Temptran™ Temperature Ranges

RTD Temptrans

<table>
<thead>
<tr>
<th>Range code</th>
<th>Temperature Range</th>
<th>TT111, TT115, TT211, TT829</th>
<th>TT176, TT246, TT220</th>
<th>TT190, TT221</th>
<th>TT205</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH</td>
<td>-328 -314 -200 -100</td>
<td>PA PB PD PE</td>
<td>Other elements</td>
<td>Elements</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>-325 100 -198 -37.8</td>
<td>PA PB PD PE PF PW</td>
<td></td>
<td>JT</td>
<td></td>
</tr>
<tr>
<td>OZ</td>
<td>-300 150 -184 -65.6</td>
<td>PA PB PD PE PF PW</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>EZ</td>
<td>-148 32 -100 0</td>
<td>PA PB PD PE PF PW</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>LN</td>
<td>-148 212 -100 100</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>-140 100 -95.6 37.8</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>UL</td>
<td>-103 752 -75.0 400.0</td>
<td>Other elements</td>
<td>Elements</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>-58 122 -50 50.0</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>EO</td>
<td>-58 212 -50 100.0</td>
<td>PA PB PD PE</td>
<td>NA</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>JD</td>
<td>-58 302 -50 150.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td>-58 500 -50 260.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>-50 100 -45.6 37.8</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td>-50 150 -45.6 65.6</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>-50 275 -45.6 135.0</td>
<td>PA PB PD PE PF PW</td>
<td>FB FC FL NA</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>-50 650 -45.6 343.3</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>-40 120 -40 48.9</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td>-40 140 -40 60.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>-40 200 -40 71.1</td>
<td>PA PB PD PE</td>
<td>FB</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>GH</td>
<td>-40 212 -40 100.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>UE</td>
<td>-40 302 -40 150.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>-30 120 -34.4 48.9</td>
<td>PA PB PD PE PF PW</td>
<td>FB FC</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AS</td>
<td>-30 130 -34.4 54.4</td>
<td>PA PB PD PE PF PW</td>
<td>FB</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-30 150 -34.4 65.6</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>DN</td>
<td>-22 122 -30 50.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>-22 302 -30 150.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>-20 120 -28.9 48.9</td>
<td>PA PB PD PE PF PW</td>
<td>ND</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>EN</td>
<td>-20 140 -28.9 60.0</td>
<td>PA PB PD PE PF PW</td>
<td>FB</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-20 180 -28.9 82.2</td>
<td>PA PB PD PE</td>
<td>FB FC NA</td>
<td>PA PB PD PE</td>
<td>CA NA</td>
</tr>
<tr>
<td>BP</td>
<td>-4 104 -20 40.0</td>
<td>PA PB PD PE</td>
<td>FC</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>SH</td>
<td>-4 122 -20 50.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>DB</td>
<td>-4 212 -20 100.0</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>IJ</td>
<td>0 65 -17.8 183</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>0 100 -17.8 37.8</td>
<td>PA PB PD PE PF PG PW</td>
<td>FB</td>
<td>PA PB PD PE</td>
<td>PW</td>
</tr>
<tr>
<td>IH</td>
<td>0 170 -17.8 48.9</td>
<td>PA PB PD PE PF PW</td>
<td>FC</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>0 130 -17.8 54.4</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DV</td>
<td>0 150 -17.8 65.6</td>
<td>PA PB PD PE</td>
<td>FB</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>EI</td>
<td>0 160 -17.8 71.1</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>0 200 -17.8 93.3</td>
<td>PA PB PD PE PF PW</td>
<td>FB NA</td>
<td>PA PB PD PE</td>
<td>CA NA</td>
</tr>
<tr>
<td>EE</td>
<td>0 250 -17.8 121.1</td>
<td>PA PB PD PE PF PW</td>
<td>NA</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AN</td>
<td>0 300 -17.8 148.9</td>
<td>PA PB PD PE PF PW</td>
<td>FB FC NA</td>
<td>PA PB PD PE</td>
<td>CA NA</td>
</tr>
<tr>
<td>JA</td>
<td>0 350 -17.8 176.7</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td>K</td>
</tr>
<tr>
<td>DS</td>
<td>0 400 -17.8 204.4</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AG</td>
<td>0 500 -17.8 260.0</td>
<td>PA PB PD PE PF PW</td>
<td>NA</td>
<td>PA PB PD PE</td>
<td>CA NA</td>
</tr>
<tr>
<td>ON</td>
<td>0 550 -17.8 287.8</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>0 600 -17.8 315.6</td>
<td>PA PB PD PE PF PW</td>
<td>NA</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>0 800 -17.8 426.7</td>
<td>PA PB PD PE PF PW</td>
<td>NA</td>
<td>PA PB PD PE</td>
<td></td>
</tr>
<tr>
<td>BZ</td>
<td>0 1000 -17.8 537.8</td>
<td>PA PB PD PE</td>
<td></td>
<td>PA PB PD PE</td>
<td></td>
</tr>
</tbody>
</table>

* Specifications subject to change
For more temperature ranges (over 400 options) go to www.minco.com/rangecode/

<table>
<thead>
<tr>
<th>Range code</th>
<th>Temperature Range</th>
<th>RTD Temptrans TT111, TT115, TT211, TT829</th>
<th>Thermocouple Temptrans TT176, TT246, TT220</th>
<th>TT190, TT221</th>
<th>TT205</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>0 1300 -17.8 704.4</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>14 104 -10.0 40.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AJ</td>
<td>14 122 -10.0 50.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>20 70 -6.7 21.1</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GV</td>
<td>20 100 -6.7 37.8</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>20 120 -6.7 48.9</td>
<td>PA PB PD PE PF PW</td>
<td>FA FB NA PA PB PD PE PF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE</td>
<td>20 240 -6.7 115.6</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>20 320 -6.7 160.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QE</td>
<td>22 122 -5.6 50.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td>23 131 -5.0 55.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>30 80 -1.1 26.7</td>
<td>PA PB PD PE PF PW</td>
<td>FB FC PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA</td>
<td>30 90 -1.1 32.2</td>
<td>PA PB PD PE PF PW</td>
<td>FC PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP</td>
<td>30 100 -1.1 37.8</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BI</td>
<td>30 130 -1.1 54.4</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE PF PW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQ</td>
<td>30 150 -1.1 65.6</td>
<td>PA PB PD PE</td>
<td>FB PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>30 180 -1.1 82.2</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV</td>
<td>30 230 -1.1 110.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>30 240 -1.1 115.6</td>
<td>PA PB PD PE PF PW</td>
<td>FB PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>30 250 -1.1 121.1</td>
<td>PA PB PD PE PF PW</td>
<td>NA PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GQ</td>
<td>32 100 0.0 37.8</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>32 104 0.0 40.0</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>32 122 0.0 50.0</td>
<td>PA PB PD PE PF PW</td>
<td>FB FC PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL</td>
<td>32 167 0.0 75.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>32 212 0.0 100.0</td>
<td>PA PB PD PE PF PW</td>
<td>FB FC NA PA PB PD PE CA NA</td>
<td></td>
<td>JT</td>
</tr>
<tr>
<td>QR</td>
<td>32 257 0.0 125.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>32 280 0.0 137.8</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>32 302 0.0 150.0</td>
<td>PA PB PD PE PF PU PW</td>
<td>FC NA PA PB PD PE CA</td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>K</td>
<td>32 392 0.0 200.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE CA</td>
<td></td>
<td>JK</td>
</tr>
<tr>
<td>LX</td>
<td>32 400 0.0 204.4</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BW</td>
<td>32 482 0.0 250.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>32 572 0.0 300.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JW</td>
<td>32 932 0.0 500.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA</td>
<td>32 1112 0.0 600.0</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GF</td>
<td>32 1472 0.0 800.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>33.8 123.8 1.0 51.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>40 90 4.4 32.2</td>
<td>PA PB PD PE PF PW</td>
<td>FB PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU</td>
<td>40 100 4.4 37.8</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>40 120 4.4 48.9</td>
<td>PF PW FC</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK</td>
<td>40 140 4.4 60.0</td>
<td>PA PB PD PE PF PW</td>
<td>FB PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH</td>
<td>40 240 4.4 115.6</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KP</td>
<td>42 92 5.6 33.3</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DU</td>
<td>45 95 7.2 35.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DX</td>
<td>50 100 10.0 37.8</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>50 110 10.0 43.3</td>
<td>PA PB PD PE</td>
<td>FB PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>50 120 10.0 48.9</td>
<td>PA PB PD PE PF PW</td>
<td>FB PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>50 150 10.0 65.6</td>
<td>PA PB PD PE PF PW</td>
<td>FA FB NA PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV</td>
<td>50 230 10.0 110.0</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>50 250 10.0 121.1</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE PF PW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AO</td>
<td>50 300 10.0 148.9</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE CA FA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KF</td>
<td>50 400 10.0 204.4</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>70 220 21.1 104.4</td>
<td>PA PB PD PE PF PW</td>
<td>FB FC PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>100 500 37.8 260.0</td>
<td>PA PB PD PE PF PW</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH</td>
<td>122 302 50.0 150.0</td>
<td>PA PB PD PE</td>
<td>PA PB PD PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL</td>
<td>200 500 93.3 260.0</td>
<td>PA PB PD PE PF PW</td>
<td>FA FB NA PA PB PD PE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Element codes (PA, PB, PD, PE, etc.) are defined in the Resistance/Temperature Tables on page 1-13

Specifications subject to change
Temptran™ Calibration & Accessories

Special high-accuracy calibration
Standard transmitters are calibrated to the nominal resistance values of the RTD at the zero and span points. Total system error includes the tolerance of both the transmitter and the RTD sensor.

If you order Minco Temptrans calibrated to the actual resistance of the RTD (traceable to NIST), this effectively subtracts the sensor tolerance from system accuracy specifications.

Free NIST traceability
With each matched sensor/transmitter set, Minco sends you calibration data traceable to the National Institute of Standards & Technology. This helps your process comply with ISO 9001 and other quality standards.

Specifications and order options
To order a Temptran with special calibration, replace the standard model (eg. TT111) with the special calibration model (eg. TT151). Specifications for special calibration models are identical to their standard model counterparts.

<table>
<thead>
<tr>
<th>Standard model</th>
<th>Special calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT111</td>
<td>TT151</td>
</tr>
<tr>
<td>TT115</td>
<td>TT155</td>
</tr>
<tr>
<td>TT176</td>
<td>TT676</td>
</tr>
<tr>
<td>TT211</td>
<td>TT711</td>
</tr>
<tr>
<td>TT220</td>
<td>TT720</td>
</tr>
<tr>
<td>TT246</td>
<td>TT746</td>
</tr>
<tr>
<td>TT273</td>
<td>TT773</td>
</tr>
</tbody>
</table>

Recalibration
Minco prints RTD resistance values right on the Temptran label to simplify recalibration. You simply connect a resistance decade box or “RTD simulator” in place of the RTD, dial in the correct values, and adjust zero and span.

Because Minco platinum RTDs are extremely stable in typical installations (0.1°C or better), you can trust the printed values for many years.

DIN rail mounting
For easy installation in instrument cabinets. Adapters fit all Temptran models. Specify length when ordering rails.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC805</td>
<td>DIN EN50022 Rail</td>
</tr>
<tr>
<td>AC807</td>
<td>Adapter for EN50022</td>
</tr>
</tbody>
</table>

Temptrans mounted to DIN rail

Dual mounting kits
The AC103528 mounting kit fits connection head models CH105, CH107, CH328, CH330, CH342, CH343, CH357, CH358, CH405 and CH407. It holds two miniature Temptrans in a single head for use with dual RTDs.

Use AC103133 for connection head models CH104, CH106 and CH306, and CH356. CH106, CH306 and CH356 also require AC103625 connection head modification.

Specifications subject to change
CT325 Miniature DC Temperature Controller

Overview
The CT325 Miniature DC Temperature Controller is designed for use with Minco Thermofoil™ heaters and RTD or thermistor sensors. It offers inexpensive on/off temperature control of your process or equipment with accuracy many times better than bimetal thermostats. Easily read and adjust the set point temperature using a voltmeter, then monitor the actual signal temperature at the other end. Operating from your 4.75 to 60 volt DC power supply, the controller can switch up to 4 amps power to the heater. A bright LED indicates when power is applied to the heater.

The entire unit is epoxy filled for moisture resistance, with a through-hole for a mounting bolt. A terminal block provides the power input, sensor input and heater output connections.

- Tight control in a small package means that enclosures or panel spaces are not required which allows successful portable device implementation
- Simple control without complicated programming can reduce set-up time
- Three-wire RTD connection cancels lead resistance for highly accurate temperature readings
- Solid state on-off control with adjustable set point improves durability compared to electro-mechanical devices
- Flexible heating control compliments all Minco Thermofoil™ Heaters for convenient off the shelf operation
- Uses standard 100 Ω or 1000 Ω platinum RTD or 50 kΩ thermistor sensor input
- Single DC power source provides power to the controller and heater up to 240 watts

Applications
- IV solutions for medical/surgical applications
- Military batteries
- Enclosures to maintain the temperature of electronics
- Ruggedized laptop LCDs and hardrives

Custom design options
Minco can customize the design of the CT325 for special applications. Specific temperature ranges, other sensor options, and special packaging are possible for volume OEM applications.

Specifications
Input: 100 Ω or 1000 Ω platinum RTD, 0.00385 Ω/°C, 2 or 3-leads, or 50 kΩ NTC thermistor, 2-lead.

Setpoint range: 2 to 200°C (36 to 392°F) for platinum RTD input. 25 to 75°C (77 to 167°F) for thermistor input. Consult factory for other ranges.

Setpoint stability: ±0.02% of span/°C.

V\textsubscript{ref} signal: 0.010 V/°C over specified range.

<table>
<thead>
<tr>
<th>Platinum RTD sensor</th>
<th>Thermistor sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2°C</td>
<td>0.02 V</td>
</tr>
<tr>
<td>50°C</td>
<td>0.50 V</td>
</tr>
<tr>
<td>100°C</td>
<td>1.00 V</td>
</tr>
<tr>
<td>200°C</td>
<td>2.00 V</td>
</tr>
</tbody>
</table>

Accuracy: ±1% of span

Linearity: ±0.1% of span

Deadband: ±0.1°C (0.2°F).

Input power: 4.75 to 60 VDC.

Output: Open drain, 4 amps max. DC.

Leadwire compensation: (3-wire RTD) ±0.06°C/Ω for 100 Ω or 1000 Ω platinum up to 25 Ω per leg.

Fault protection: Heater disabled on RTD short or thermistor open. No heater protection; external fuse is recommended.

Operating ambient temperature range: 40 to 70°C (-40 to 158°F).

Relative humidity: 0 to 95% non-condensing.

Physical: Polycarbonate case, epoxy sealed for moisture resistance.

Weight: 1 oz. (28g).

Connections: Terminal block for wires AWG 22 to AWG 14.

Mounting: Mounting hole for #6 screw through or #8 thread forming screw.

Specifications subject to change
Specifications subject to change

[Table]

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Ω platinum RTD (0.00385 TCR)</td>
<td>PD</td>
</tr>
<tr>
<td>1000 Ω platinum RTD (0.00385 TCR)</td>
<td>PF</td>
</tr>
<tr>
<td>50 kΩ thermistor R25/R125 = 31.2</td>
<td>TF</td>
</tr>
</tbody>
</table>

Note: 50kW thermistor sensor TS665TF is available on page 10-6

Specification and order options

<table>
<thead>
<tr>
<th>CT325</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td>Sensor type from table</td>
</tr>
<tr>
<td>1</td>
<td>Power supply:</td>
</tr>
<tr>
<td></td>
<td>1 = 4.75 to 10 VDC</td>
</tr>
<tr>
<td></td>
<td>2 = 7.5 to 60 VDC</td>
</tr>
<tr>
<td>C</td>
<td>Temperature range:</td>
</tr>
<tr>
<td></td>
<td>A = 25 to 75°C (thermistor only)</td>
</tr>
<tr>
<td></td>
<td>C = 2 to 200°C (RTD only)</td>
</tr>
<tr>
<td>1</td>
<td>Dead band:</td>
</tr>
<tr>
<td></td>
<td>1 = 0.1°C</td>
</tr>
</tbody>
</table>

CT325PD1C1 = Sample part number

Specify and order products at:
www.minco.com/sensors_config

Wiring diagrams

AC powered heaters

The CT325 can provide the control signal to an external solid state relay to switch AC power. Use a DC supply voltage suitable for both the CT325 and SSR.

Dimensions in inches (mm)

- Mounting Hole: 69 (17.5)
- 1.50 (38.1) I.D. THRU
- 0.149 (3.8) Test Points
- Setpoint Adjust
- GND
- Heat Indicator
- 115 VAC Neutral Line
Loop-powered Indicators

Overview
The display range is field programmable via coarse dip switches and two fine adjustment potentiometers. Wiring is easy. Simply connect the indicator in series with the 4 to 20 mA loop. Forward voltage drop is only 2.8 VDC.

- Local indication of process variable for convenient visual verification
- Enclosures are sealed from harsh environments to enhance product reliability and longevity
- Variety of mounting options allows for flexible and easy installation
- Compatible with 4 to 20 mA temperature transmitters for easy sensor interchangeability

TI196 head-mounted indicator
The TI196 includes an explosionproof connection head and digital indicator for local indication of temperature. Sensors and transmitters are specified separately. Optional Temptran models TT111, TT151, TT164, TT291, TT211, TT711, TT176, TT676, TT205 or TT190 will fit inside the connection head along with the meter.

TI196 Hazardous Area Certification (explosionproof/flameproof):
- Class I, Div I, Groups B,C and D
- Class II, Div I, Groups E,F and G
- Class III
- EEx d IIC

TI350 indicator
The TI350 features a washdown compatible digital readout for local indication of temperature. Sensors and transmitters are specified separately. Optional Temptran models TT321, TT821, TT831 or TT921 will fit inside the case along with the meter. Other 4 to 20 mA transmitters may be mounted outside the case and used with this device.

- NEMA 4X enclosure
- Cable glands are installed for 0.118” to 0.256” (3mm to 6.5mm) cable

AC102765 pipe mounting hardware kit
Use AC102765 for mounting TI196 or TI350 to vertical or horizontal pipe. Kit includes plate, stainless U-bolts, nuts and washers for 2” schedule 40 pipe (Ø 2.375” (60mm)).

Order model number AC102765

Specifications subject to change
TI196 head-mounted indicator

Specifications

Input: 4 to 20 mA DC series connection
Range: User adjustable.
 Zero: -500 to +1000 counts.
 Span: 10 to 2000 counts.
Accuracy: ± (0.1% reading + 1 count).
Temperature Coefficient:
 Zero: ± 0.075 counts/°C typ.
 Span: ± 0.005% of span/°C typ.
Linearity: ± (0.1% of span + 1 count).
Forward Voltage Drop: 2.8 volts DC maximum.
Display: 0.59" (15mm) high, 3-1/2 digit LCD, with °C/°F descriptor.
Display Update: 3 times per second.
Underrange Indication: -1 in MSD (Most Significant Digit).
Overrange Indication: 1 in MSD.
Connections: Terminal Block, Pluggable
Decimal: User programmable to 1 position or absent (i.e. 1XX.X or 1XXX).
Ambient Temperature Range:
 Operating: 32 to 122°F (0 to 50°C).
 Storage: -4 to 149°F (-20 to 65°C).
Weight: 50 oz. (1420 g.)
Enclosure: Aluminum, polyester-coated
Enclosure Rating: NEMA 4X, IP66
Dimensions (connection head): 4.5" W x 4.5" H x 3.4" D
(144 mm W x 114 mm H x 87 mm D).

TI196 specification and order options

<table>
<thead>
<tr>
<th>TI196</th>
<th>Model number TI196</th>
</tr>
</thead>
</table>
| P3 | Pipe thread size:
 P2 = 3⁄4 - 14 NPT (sensor and conduit)
 P3 = 1⁄2 - 14 NPT (sensor and conduit) |
| (0/100)| Temperature range:
 (4 mA temp./20 mA temp.), user adjustable |
| C | Display:
 C = Celsius
 F = Fahrenheit |
| TI196P3(0/100)C = Sample part number |

Note: Sensors and transmitters are specified separately.

TI350 indicator

Specifications

Input: 4 to 20 mA DC series connection
Range: User adjustable.
 Zero: -500 to +1000 counts.
 Span: 10 to 2000 counts.
Accuracy: ± (0.1% reading + 1 count).
Temperature Coefficient:
 Zero: ± 0.075 counts/°C typ.
 Span: ± 0.005% of span/°C typ.
Linearity: ± (0.1% of span + 1 count).
Forward Voltage Drop: 2.8 volts DC maximum.
Display: 0.59" (15mm) high, 3-1/2 digit LCD, with °C/°F descriptor.
Display Update: 3 times per second.
Underrange Indication: -1 in MSD (Most Significant Digit).
Overrange Indication: 1 in MSD.
Connections: Terminal Block, Pluggable
Decimal: User programmable to 1 position or absent (i.e. 1XX.X or 1XXX).
Ambient Temperature Range:
 Operating: 32 to 122°F (0 to 50°C).
 Storage: -4 to 149°F (-20 to 65°C).
Weight: 7 oz. (200 g.)
Enclosure: Polycarbonate, NEMA 4X.
Dimensions (box only): 2.6" W x 4.5" L x 2.2" D
(65 mm W x 115 mm H x 56 mm D).

TI350 specification and order options

<table>
<thead>
<tr>
<th>TI350</th>
<th>Model number TI350</th>
</tr>
</thead>
</table>
| (0/100)| Temperature range:
 (4 mA temp./20 mA temp.), user adjustable |
| C | Display:
 C = Celsius
 F = Fahrenheit |
| TI350(0/100)C = Sample part number |

Note: Sensors and transmitters are specified separately.
CT224 12-Channel Temperature Alarm/Monitor

Overview
The CT224 consists of a 12-Channel temperature monitor/over-temperature alarm and MincoSoft™ CT224 Software. It is the next generation in temperature monitoring equipment from Minco designed to meet the needs of electric machinery protection. The 12-channel scanning capability, standard RS485/RS232 interface and Windows-compatible software utility for system configuration and data logging provide over-temperature and under-temperature protection and critical feedback to safeguard expensive machinery.

- UL and cUL recognized to help meet regulatory compliance
- PC programmable with Windows compatible software makes monitoring easy and efficient, allowing quick reprogramming and extensive data logging
- Mix and match sensor input types for freedom to adapt to pre-installed bearing and apparatus sensors
- Ability to monitor 12 inputs allows you to monitor stator sensors from two motors
- Five outputs, relays or logic offers either internal relay trips or flexibility of external control
- Logic outputs can be used with external SSRs
- Prevent costly damage to motors, generators, transformers, and other equipment
- Power loss protection
- 24 independent trip points (2 per channel)
- Programmable deadband (hysteresis)
- Rugged steel enclosure
- Can be used as a 4-channel on/off controller
- Display High, Low, or Any valid zones
- Self-calibrating

Software
MincoSoft™ CT224 software features:
- Compatibility with Microsoft® Windows® operating system
- User-friendly configuration program
- Save unlimited set-up configurations
- Commission mode to test configurations before implementation
- Continuously displayed measurement and relay status of all 12 channels
- Data-logging

Applications
- Generators
- Motors
- Turbines
- Compressors
- Pumps

Specifications subject to change
Specifications

Input: 1 to 12 RTDs (2 or 3-wire), thermocouples, or 4 to 20 mA current loops. Accepts any combination of input types.

Standard Input types:

- RTD:
 -200 to 700°C: PA (Platinum / 100 Ω / 0.00392 Ω/°C)
 -200 to 700°C: PB (Platinum / 100 Ω / 0.00391 Ω/°C)
 -200 to 850°C: PD/PE (Platinum / 100 Ω / 0.00385 Ω/°C)
 -200 to 600°C: PF (Platinum / 1000 Ω / 0.00385 Ω/°C)
 -80 to 260°C: NA (Nickel / 120 Ω / 0.00672 Ω/°C)
 -100 to 260°C: CA (Copper / 10 Ω / 0.00427 Ω/°C)

- Thermocouple:
 -270 to 1000°C: Type E
 -200 to 1200°C: Type J
 -270 to 1150°C: Type K
 -270 to 400°C: Type T

- **4 to 20 mA current loop:** Pressure (PSI, Bar), Humidity (%), Temperature (°F, °C), Vibration (G), and process variable (mA, VDC). Note: 4 to 20 mA inputs must be linear with respect to the measured variable.

Input scan rate: 1.5 seconds maximum to scan all 12 channels.

Input fault detection: Options for ignoring, sounding alarm, or tripping relays associated with the failed sensor. Other zones are unaffected.

Output: 24 independent trip points (2 per channel): 5 relays, one relay is intended for use as an alarm function (but can be configured as a trip point), and one internal audible alarm. Alarm may be programmed to sound when selected relays trip. Logic output option is available for controlling external SSRs or sending a signal to another device.

- **Relays:** Form C, SPDT 10 A @ 250 VAC/24 VDC resistive load; 10 A make current; 2500 VA breaking capacity; HP at 120 VAC motor load.
- **Trip point hysteresis (deadband):** Programmable from 0 to 20 (°C or °F).
- **Display:** 20 x 4 line backlit LCD. 0.1°C or 0.1°F resolution. Front panel LEDs indicate relay and alarm status.
- **Accuracy:** ±2°C (3°F) in 0 to 60°C (32 to 158°F) ambient, over entire range of the input.
- **Supply power:** 85 to 240 VAC @ 50/60 Hz or 110 to 250 VDC, 5 watts max.; or 18 to 36 VDC, 6 watts max.
- **Keyboard:** 4 membrane type keys with audible feedback.

Serial interface: RS485 or RS232 (Modbus protocol).

Power loss protection: Trip points and program parameters stored in non-volatile memory. Normal operation resumes when power is restored.

Programming: Programmable from front panel or via RS485 or RS232 interface using Modbus protocol. PC software is included for data logging, commissioning, and configuration. Program settings may be password protected.

Firmware fault protection: Watchdog resets microprocessor if it fails to perform program sequence.

Enclosure: Steel case; NEMA 4 front panel.

Ambient temperature rating: 0 to 60°C (32 to 158°F).

Connections: Terminal blocks at rear accept wires to AWG 12.

Leadwire resistance compensation: Up to 30 Ω per leadwire for RTDs with no effect on reading.

Dimensions: 7.5 x 11.5 x 2” (191 x 292 x 51 mm).

Mounting: Panel mount enclosure. Cutout size of 6.8” x 10.6” (173 x 269 mm).

Weight: 3.8 lbs. (1.72 kg.).

Approvals: UL 508, CSA C22.2 No. 14-M91.

Accessories

AC102734: Communication package. Includes isolated RS232 to RS485 converter, power supply, cable, and adapter.

Specification and order options

<table>
<thead>
<tr>
<th>CT224</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Power supply</td>
</tr>
<tr>
<td>A</td>
<td>85-240 VAC @ 50/60 Hz / 110-250 VDC</td>
</tr>
<tr>
<td>B</td>
<td>18-36 VDC</td>
</tr>
<tr>
<td>1</td>
<td>Output</td>
</tr>
<tr>
<td>1</td>
<td>1: Relays</td>
</tr>
<tr>
<td>2</td>
<td>2: Logic (5 VDC)</td>
</tr>
<tr>
<td>A</td>
<td>Interface</td>
</tr>
<tr>
<td>A</td>
<td>RS232</td>
</tr>
<tr>
<td>B</td>
<td>RS485</td>
</tr>
</tbody>
</table>

CT224A1A = Sample part number
Overview

The CT15 is an easy-to-use controller with sophisticated PID control. It can also be a single or 2-stage alarm (using alarm feature plus control relay) to monitor motors and generators for overheating.

- RTD or thermocouple input
- Control modes: Self-Tune, pre-set or programmable PID, or On/Off
- Bright red LED display
- Ramp to setpoint
- Digital sensor input correction
- Digital input filter adjustable for noisy or jittery processes
- Four security levels
- Setpoint limits
- Non-volatile memory needs no battery backup
- Input fault timer
- Alarms at one or two temperatures
- Alarm Relay option is programmable for high, low, absolute, or deviation, can be reset manually or automatically, and controls a single electromechanical relay with voltage-free contacts

Specifications

Selectable inputs:
RTD: 2 or 3-wire, Minco types PD or PE (100 Ω EN60751 platinum).
Thermocouple: Type J (factory default), K, T (selectable).

Input impedance:
Thermocouple: 3 megohms minimum.
RTD current: 200 µA maximum.

Sensor break or short protection: De-energizes control outputs to protect system.

Loop break protection: Error message is initiated and output is turned off in case of shorted sensor or open heater circuit. Break time adjustable from OFF to 99 minutes.

Cycle rate: 1 to 80 seconds.

Setpoint range: Selectable from -212 to 1371°C (-350 to 2500°F), input dependent.

Display: One 4 digit, 7 segment, 0.3” high LED. Display shows the measured temperature unless a control key is pressed, then it will display the item value.

Control action: Reverse (usually heating) or Direct (usually cooling), selectable.

Ramp/Soak: One ramp, 0 to 100 hours.
Specifications continued

Accuracy: ±0.25% of span ±1 count.

Resolution: 1° or 0.1°, selectable.

Line voltage stability: ±0.05% over supply voltage range.

Temperature stability: 4 µV/°C (2.3 µV/°F) typical, 8 µV/°C (4.5 µV/°F) max. (100 ppm/°C typical, 200 ppm/°C max.).

Isolation: Relay and SSR outputs are isolated. Pulsed voltage output must not share a common ground with the input.

Supply voltage: 100 to 240 VAC nom., +10/-15%, 50 to 400 Hz, single phase; 132 to 240 VDC, nom., +10/-20%. 5 VA maximum.

Note: Do not confuse controller power with heater power. The controller does not supply power to the heater, but only acts as a switch. For example, the controller could be powered by 115 VAC, but controlling 12 VDC to the heater.

Operating temperature range: -10 to 55°C (14 to 131°F).

Memory backup: Non-volatile memory (no batteries required).

Control output ratings:
AC SSR (SPST): 3.5 A @ 250 VAC @ 25°C (77°F); derates to 1.25 A @ 55°C (130°F).
Minimum 48 VAC and 100mA required.
An SSR is recommended for longer life than a mechanical relay.
Switched voltage (non-isolated):
5 VDC @ 25 mA.
Mechanical relay, SPST Form A (Normally Open):
3 A resistive, 1.5 A inductive @ 250 VAC;
pilot duty: 250 VA; 2 A @ 125 VAC or
1 A @ 250 VAC.
Alarm relay, SPST Form A (Normally Open):
3 A resistive, 1.5 A inductive @ 250 VAC;
pilot duty: 250 VA; 2 A @ 125 VAC or
1 A @ 250 VAC.

Weight: 227g (8 oz.).

Agency approvals: UL & CSA.

Front panel rating: Type 4X (IP66).

Specifications and order options

<table>
<thead>
<tr>
<th>CT15</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alarm:</td>
</tr>
<tr>
<td></td>
<td>0 = No</td>
</tr>
<tr>
<td></td>
<td>1 = Yes</td>
</tr>
<tr>
<td>2</td>
<td>Input:</td>
</tr>
<tr>
<td></td>
<td>1 = J, K, or T thermocouple</td>
</tr>
<tr>
<td></td>
<td>2 = 100 Ω platinum RTD, type PD or PE</td>
</tr>
<tr>
<td>1</td>
<td>Output:</td>
</tr>
<tr>
<td></td>
<td>1 = Built-in AC SSR</td>
</tr>
<tr>
<td></td>
<td>2 = Pulsed voltage (5 VDC)</td>
</tr>
<tr>
<td></td>
<td>3 = Mechanical relay</td>
</tr>
</tbody>
</table>

CT15121 = Sample part number

Note: See page 5-30 for controller accessories.

Dimensions shown in inches (mm)

PANEL CUTOUT: 1.775" × 1.775" (45 mm × 45 mm)
MAXIMUM PANEL THICKNESS: 0.25" (6.35 mm)
DIMENSIONS IN INCHES (mm)

Specifications subject to change
Overview
This economical controller packs sophisticated PID control into a compact 1/16 DIN enclosure. A wide range of control modes, sensor input types, and relay or SSR outputs give versatile control of Thermofoil™ heaters and lets you easily connect to other electronics.

- Dual displays continuously show the set point and the actual temperature reading in resolutions of 1°, 0.1°, or engineering units
- Universal Input fits any sensor: Select from 10 thermocouple types, 4 RTD types, voltage, and current signals
- Isolated Outputs for safe, easy wiring
- Loop Break protection handles sensor or heater failure
- Peak / Valley records the maximum and minimum temperatures
- Front panel is waterproof and corrosion-resistant, making it ideal for sanitary applications. Illuminated keypad for easy operation
- Limit the temperatures which the operator can set via four password-protected Security Levels
- Controller can Self-Tune for best PID control
- Control modes: Self-Tune, pre-set or adjustable PID values, simple On/Off control, and open loop
- Fuzzy Logic provides better response time and reduces overshoot in processes with unpredictable inputs
- Alarms at one or two temperatures
- Alarm Relay option is programmable for high, low, absolute, or deviation, can be reset manually or automatically, and controls a single electromechanical relay with voltage-free contacts
- Ramp & Soak option handles complex heating profiles of 16 segments with front-panel activation and a selectable time base (CT16A3)
- Auto / Manual option easily switches to manual control for set up or experiments (CT16A3)
- RS-232 or RS-485 Serial Communications access the temperature readings and all control parameters (optional)
- Retransmit either the sensed temperature or the set point as a voltage or current signal to a computer or recorder (optional)
- 4-Stage Set Point to quickly switch from one temperature to the next (optional)
Specifications

Selectable inputs:
RTD: 2 or 3-wire, Minco types
 PD or PE (100 Ω EN60751 platinum),
 PA (100 Ω NIST platinum),
 PF (1000 Ω EN60751 platinum), or
 NA (120 Ω Nickel).
Thermocouple: Type J (factory default), K, T, L, E, R, S, B, C, or N.
DC current: 0-20 mA or 4-20 mA (use with Temptran™ transmitters).
DC voltage: 0-10 or 2-10 VDC, -10 to 10 mVDC, scalable.

Input impedance:
Voltage: 5000 Ω.
Thermocouple: 3 megohms minimum.
Current: 10 Ω.
RTD current: 200 µA.

Sensor break or short protection:
Selectable output: disabled, average output before fault, or preprogrammed output.
Adjustable delay: 0.0 to 540.0 minutes.

Loop break protection: Error message is initiated and output is turned off in case of shorted sensor or open heater circuit.
Break time adjustable from OFF to 9999 seconds.

Cycle rate: 1 to 80 seconds.

Setpoint range: Selectable from -212 to 2320°C (-350 to 4208°F), input dependent.

Displays: Two, 4 digit, 7 segment, 0.3” high LEDs. Process Value red, Setpoint Value green. °C or °F.

Control action: Reverse (usually heating) or Direct (usually cooling), selectable.

Ramp/soak: (CT16A3 only) 16 separate ramp and soak times are adjustable in minutes or seconds from 0 to 9999. When the program has ended, you may choose to repeat, hold, revert to local setpoint, or turn the outputs off.

Accuracy: ±0.25% of span ±1 count.
Resolution: 1° or 0.1°, selectable.

Line voltage stability: ±0.05% over supply voltage range.

Temperature stability: 4 µV/°C (2.3 µV/°F) typical, 8 µV/°C (4.5 µV/°F) max. (100 ppm/°C typical, 200 ppm/°C max).

Isolation:
Relay and SSR: 1500 VAC to all other inputs and outputs.
SP1 and SP2 current and voltage: 500 VAC to all other inputs and outputs, but not isolated from each other.
Process output (options 934, 936): 500 VAC to all other inputs and outputs.

Supply voltage: 100 to 240 VAC nom., +10/-15%, 50 to 400 Hz, single phase; 132 to 240 VDC, nom., +10/-20%. 5 VA maximum. 12 & 24 volt AC/DC optional.

Note: Do not confuse controller power with heater power. The controller does not supply power to the heater, but only acts as a switch. For example, the controller could be powered by 115 VAC, but controlling 12 VDC to the heater.

Operating temperature range: -10 to 55°C (14 to 131°F).

Memory backup: Non-volatile memory (no batteries required).

Control output ratings:
AC SSR (SPST): 2.0 A combined outputs
 A & B @ 240 VAC @ 25°C (77°F);
 derates to 1.0 A @ 55°C (130°F).

An SSR is recommended for longer life than a mechanical relay.

Mechanical relay, SPST Form A (Normally Open) or Form B (Normally Closed):
 3 A resistive, 1.5 A inductive @ 240 VAC;
 pilot duty: 240 VA; 2 A @ 120 VAC or 1 A @ 240 VAC.

Switched voltage (isolated): 15 VDC @ 20 mA.
Current (isolated): 0 to 20 mA, 600 Ω max.
DC SSR: 1.75 A @ 32 VDC max.
Alarm relay, SPST Form A (Normally Open):
 3 A @ 240 VAC resistive;
 1/10 HP @ 120 VAC.

Specifications and order options

<table>
<thead>
<tr>
<th>CT16A</th>
<th>Model number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Feature set:</td>
</tr>
<tr>
<td></td>
<td>2 = Standard</td>
</tr>
<tr>
<td></td>
<td>3 = Enhanced (ramp & soak, Auto/manual)</td>
</tr>
<tr>
<td>1</td>
<td>Alarm relay:</td>
</tr>
<tr>
<td></td>
<td>0 = No</td>
</tr>
<tr>
<td></td>
<td>1 = Yes</td>
</tr>
<tr>
<td>1</td>
<td>Output A:</td>
</tr>
<tr>
<td></td>
<td>1 = Built-in AC SSR</td>
</tr>
<tr>
<td></td>
<td>2 = Pulsed voltage (15 VDC) for external SSR</td>
</tr>
<tr>
<td></td>
<td>3 = Mechanical relay, SPST (normally open)</td>
</tr>
<tr>
<td></td>
<td>4 = Mechanical relay, SPST (normally closed)</td>
</tr>
<tr>
<td></td>
<td>5 = Current</td>
</tr>
<tr>
<td></td>
<td>8 = DC SSR</td>
</tr>
<tr>
<td>0</td>
<td>Output B:</td>
</tr>
<tr>
<td></td>
<td>0 = None</td>
</tr>
<tr>
<td></td>
<td>1 = Built-in AC SSR</td>
</tr>
<tr>
<td></td>
<td>2 = Pulsed voltage (15 VDC) for external SSR</td>
</tr>
<tr>
<td></td>
<td>3 = Mechanical relay, SPST (normally open)</td>
</tr>
<tr>
<td></td>
<td>4 = Mechanical relay, SPST (normally closed)</td>
</tr>
<tr>
<td></td>
<td>5 = Current</td>
</tr>
<tr>
<td>-948</td>
<td>Options on next page (leave blank for none)</td>
</tr>
</tbody>
</table>

CT16A2110-948 = Sample part number
CT16A - Options and Accessories

Dimensions shown in inches (mm)

Additional options for CT16A (board level)

934: Analog retransmission of Process Variable or Set Variable: (4 to 20 mA DC) For use as recorder, transmitter or computer A/D input. Linearized 4 to 20 mA DC signal follows the Process or Set variable. Scalable.

936: Analog retransmission of Process Variable or Set Variable: (0 to 10 VDC) Similar to option 934, but output signal is linearized 0 to 10 VDC.

948: 4-Stage setpoint: Four preset setpoints may be selected by external contacts. Each set point has its own set of PID values giving controller 4 distinct "recipes" for different process situations.

992: RS-485 Computer communication link: Allows remote computer to read and write all control parameters.

993: RS-232 Computer communication link: Allows remote computer to read and write all control parameters.

Accessories

AC744: 1-10 A, 24 to 280 VAC SSR
AC745: 1-25 A, 24 to 280 VAC SSR
AC746: 1-50 A, 24 to 280 VAC SSR
AC1009: 1-20 A, 0 to 100 VDC SSR
AC743: SSR heat sink for high current or ambient temperature
AC996 R/C Snubber: Highly recommended to prolong relay contact life if using the mechanical relay or SSR output to drive a relay or solenoid. Also, for the CT16A AC SSR output, make sure that the coil HOLDING current is greater than 100 mA and voltage is minimum 48 VDC.

AC1001: Steel 1/16 to / DIN adapter plate. 127 x 127 mm gray steel with 45 x 45 mm centered hole.

Specify and order products at: www.minco.com/sensors_config